• Title/Summary/Keyword: object scanning

Search Result 256, Processing Time 0.027 seconds

Land cover classification using LiDAR intensity data and neural network

  • Minh, Nguyen Quang;Hien, La Phu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • LiDAR technology is a combination of laser ranging, satellite positioning technology and digital image technology for study and determination with high accuracy of the true earth surface features in 3 D. Laser scanning data is typically a points cloud on the ground, including coordinates, altitude and intensity of laser from the object on the ground to the sensor (Wehr & Lohr, 1999). Data from laser scanning can produce products such as digital elevation model (DEM), digital surface model (DSM) and the intensity data. In Vietnam, the LiDAR technology has been applied since 2005. However, the application of LiDAR in Vietnam is mostly for topological mapping and DEM establishment using point cloud 3D coordinate. In this study, another application of LiDAR data are present. The study use the intensity image combine with some other data sets (elevation data, Panchromatic image, RGB image) in Bacgiang City to perform land cover classification using neural network method. The results show that it is possible to obtain land cover classes from LiDAR data. However, the highest accurate classification can be obtained using LiDAR data with other data set and the neural network classification is more appropriate approach to conventional method such as maximum likelyhood classification.

Efficient Digitizing in Reverse Engineering By Sensor Fusion (역공학에서 센서융합에 의한 효율적인 데이터 획득)

  • Park, Young-Kun;Ko, Tae-Jo;Kim, Hrr-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.61-70
    • /
    • 2001
  • This paper introduces a new digitization method with sensor fusion for shape measurement in reverse engineering. Digitization can be classified into contact and non-contact type according to the measurement devices. Important thing in digitization is speed and accuracy. The former is excellent in speed and the latter is good for accuracy. Sensor fusion in digitization intends to incorporate the merits of both types so that the system can be automatized. Firstly, non-contact sensor with vision system acquires coarse 3D point data rapidly. This process is needed to identify and loco]ice the object located at unknown position on the table. Secondly, accurate 3D point data can be automatically obtained using scanning probe based on the previously measured coarse 3D point data. In the research, a great number of measuring points of equi-distance were instructed along the line acquired by the vision system. Finally, the digitized 3D point data are approximated to the rational B-spline surface equation, and the free-formed surface information can be transferred to a commercial CAD/CAM system via IGES translation in order to machine the modeled geometric shape.

  • PDF

Measuring and Characterizing the Apparent Thickness and its Irregularity of Fine Wire Bundle by Using a Laser Scanning Method (Laser Scanning을 이용한 극세선 집속체의 겉보기 굵기 측정과 불균제 특성)

  • Huh, Y.;Kim, J.S.;Baik, Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1573-1576
    • /
    • 2003
  • The quality of bundles is closely related with the apparent thickness. Especially the variation of apparent thickness of bundle determines the qualify of the plane structure made or the bundle such as surface evenness, pore size, and the shape of air-gap, etc.,. This study is dealing with the development of a new measuring system of the thickness of bundle or cross-section by determining the size of the shadow of the object covered by a laser slit beam. Also the measured signal is characterized in terms of the correlogram, the irregularity in wavelength. The correlogram for the irregularity of several sample types could be represented by a sinusoidal function with exponentially decaying amplitude. Moreover, influence of the measuring speed on the signal and the characteristic differences according to the different types of bundle are investigated.

  • PDF

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.

Scanner Calibration Method for Higher Accuracy at Acquisition of Digital Imagery Data in GSIS (지형공간정보체계에서 수치영상자료 취득의 정확도 향상을 위한 주사기의 검정 방법)

  • Choi, Chul-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.153-158
    • /
    • 1993
  • It is important to establish the transformational relation between scanned image coordinates and digital image coordinates because the coordinate system of digital image is transformed from scanned image coordinate system through scanning work. And, some researches are required in scanning works to correct the deformation that is due to the motion of scanner. In this study, some procedures are applied to determine the optimal calibration model equation which can calibrate the scanner. As a result the optimal calibration model equation for the object scanner is determined The procedure of this study can applied to the calibration of other types of scanner, because the procedures are done with the analysis of geometrical properties rather than the analysis of physical properties.

  • PDF

The Study on Reconnaissance Surveying Using Terrestrial Laser Scanner (지상 라이다를 활용한 현황측량 연구)

  • Lee, In-Su;Kang, Sang-Gu
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.79-86
    • /
    • 2006
  • Nowadays 3D terrestrial laser scanners record high precision three-dimensional coordinates of numerous points on an object surface in a short period of time. So terrestrial laser scanner is applied to a wide variety of fields including geodesy, and civil engineering, archaeology and architecture, and emergency service and defence, etc. This study deals with the potential application of terrestrial laser scanner in the reconnaissance surveying. The results shows that terrestrial laser scanner is possible to extract the linear features and the positioning accuracy of objects measured by total station surveying is comparative to that by terrestrial laser scanner. Thereafter, it is expected that the potential applications of terrestrial laser scanning will be more increased by combining terrestrial laser scanners with airborne LiDAR (Light Detection And Ranging) and photogrammetric technology.

  • PDF

3D Measurement of TSVs Using Low Numerical Aperture White-Light Scanning Interferometry

  • Jo, Taeyong;Kim, Seongryong;Pahk, Heuijae
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.317-322
    • /
    • 2013
  • We have proposed and demonstrated a low numerical aperture technique to measure the depth of through silicon vias (TSVs) using white-light scanning interferometry. The high aspect ratio hole like TSV's was considered to be impossible to measure using conventional optical methods due to low visibility at the bottom of the hole. We assumed that the limitation of the measurement was caused by reflection attenuation in TSVs. A novel interference theory which takes the structural reflection attenuation into consideration was proposed and simulated. As a result, we figured out that the low visibility in the interference signal was caused by the unbalanced light intensity between the object and the reference mirror. Unbalanced light can be balanced using an aperture at the illumination optics. As a result of simulation and experiment, we figured out that the interference signal can be enhanced using the proposed technique. With the proposed optics, the depth of TSVs having an aspect ratio of 11.2 was measured in 5 seconds. The proposed method is expected to be an alternative method for 3-D inspection of TSVs.

Visualization of Structural Shape Information based on Octree using Terrestrial Laser Scanning (3D레이저스캐닝을 이용한 옥트리기반 구조물 형상정보 가시화)

  • Cha, Gichun;Lee, Donghwan;Park, Seunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.8-16
    • /
    • 2016
  • This study presents the visualization of shape information based on Octree using 3D laser scanning. The process of visualization was established to construct the Octree structure from the 3D scan data. The scan data was converted to a 2D surface through the mesh technique and the surface was then converted to a 3D object through the Raster/Vector transformation. The 3D object was transmitted to the Octree Root Node and The shape information was constructed by the recursive partitioning of the Octree Root Node. The test-bed was selected as the steel bridge structure in Sungkyunkwan University. The shape information based on Octree was condensed into 89.3%. In addition, the Octree compressibility was confirmed to compare the shape information of the office building, a computer science campus in Germany and a New College in USA. The basis is created by the visualization of shape information for double-deck tunnel and it will be expected to improve the efficiency of structural health monitoring and maintenance.

Agent Application for E-Beam Manufacturing System (전자빔 가공기에 대한 에이전트 응용)

  • Lim, Sun-Jong;Lee, Chan-Hong;Song, Jun-Yeob
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.44-49
    • /
    • 2007
  • An agent is an abstract unit for problem solving in the field of distributed artificial intelligence, and an agent-based system is designed and implemented based on the definition of agent as its central concept. Agent modeling is advantageous to abstraction, disintegration and structuring for describing complex system, so its application is increased in various areas including air traffic control, power transmission, e-commerce and medicine. There is no agreed definition of agent but agents have common points as follows: autonomy, reactivity, pro-activeness and cooperation. An agent-oriented modeling is an approach of a concept different form existing object-oriented modeling. This study proposed the agent application for E-Beam manufacturing system. To evaluate the performance of the proposed process design, we used the JADE library. The JADE toolkit provides a FIPA-compliant agent platform and a package to develp Java agents. It provides a basic set of functionalities that are regarded as essential for an autonomous agent architecture.

3D geometric model generation based on a stereo vision system using random pattern projection (랜덤 패턴 투영을 이용한 스테레오 비전 시스템 기반 3차원 기하모델 생성)

  • Na, Sang-Wook;Son, Jeong-Soo;Park, Hyung-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.848-853
    • /
    • 2005
  • 3D geometric modeling of an object of interest has been intensively investigated in many fields including CAD/CAM and computer graphics. Traditionally, CAD and geometric modeling tools are widely used to create geometric models that have nearly the same shape of 3D real objects or satisfy designers intent. Recently, with the help of the reverse engineering (RE) technology, we can easily acquire 3D point data from the objects and create 3D geometric models that perfectly fit the scanned data more easily and fast. In this paper, we present 3D geometric model generation based on a stereo vision system (SVS) using random pattern projection. A triangular mesh is considered as the resulting geometric model. In order to obtain reasonable results with the SVS-based geometric model generation, we deal with many steps including camera calibration, stereo matching, scanning from multiple views, noise handling, registration, and triangular mesh generation. To acquire reliable stere matching, we project random patterns onto the object. With experiments using various random patterns, we propose several tips helpful for the quality of the results. Some examples are given to show their usefulness.

  • PDF