• Title/Summary/Keyword: object scanning

Search Result 256, Processing Time 0.027 seconds

Development of Alignment Information Extraction System on Highway by Terrestrial Laser Scanning Technique (지상 레이저 스캐닝 기법에 의한 도로선형정보 추출 시스템 개발)

  • Kim, Jin-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.97-110
    • /
    • 2007
  • A laser scanning technique has been attracting much attention as a new technology to acquire location information. This technique might be applicable to a wide range of areas, most notably in geomatics, due to its high accuracy of location and automation of high-density data acquisition. A alignment information extraction system on highway has been developed in this study by utilizing the advantages of the laser scanning technique. The system can accurately interpret the alignment information of highway and can be applied to actual works. To develop the alignment information extraction system on highway, an algorithm that can automatically separate a horizontal alignment into a straight line, a transition curve, and a circular curve was developed. It can increase its efficiency compared to the conventional methods. In addition, an algorithm that can automatically extract design elements of horizontal and vertical alignments of highway was developed and applied to an object highway. This yielded higher practicality with more accurate values compared to those from previous studies on the extraction of design elements of highway alignment. Furthermore, the extracted design elements were used to perform a virtual driving simulation on the object highway. Through this, data were provided for a visual judgment for judging visually whether the topography and structures were harmonized in a three-dimensional manner or not. The study also presents data that can serve as a basis to determine highway surface freezing sections and to analyze three-dimensional sight distance models. Through the establishment of a systematic database for diverse data on highway and the development of web-based operating programs, an efficient highway maintenance can be ensured and also they can provide important information to be used when estimating a highway safety in the future.

  • PDF

Integration of Laser Scanning and Three-dimensional Models in the Legal Process Following an Industrial Accident

  • Eyre, Matthew;Foster, Patrick;Speake, Georgina;Coggan, John
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.306-314
    • /
    • 2017
  • Background: In order to obtain a deeper understanding of an incident, it needs to be investigated to "peel back the layers" and examine both immediate and underlying failures that contributed to the event itself. One of the key elements of an effective accident investigation is recording the scene for future reference. In recent years, however, there have been major advances in survey technology, which have provided the ability to capture scenes in three dimension to an unprecedented level of detail, using laser scanners. Methods: A case study involving a fatal incident was surveyed using three-dimensional laser scanning, and subsequently recreated through virtual and physical models. The created models were then utilized in both accident investigation and legal process, to explore the technologies used in this setting. Results: Benefits include explanation of the event and environment, incident reconstruction, preservation of evidence, reducing the need for site visits, and testing of theories. Drawbacks include limited technology within courtrooms, confusion caused by models, cost, and personal interpretation and acceptance in the data. Conclusion: Laser scanning surveys can be of considerable use in jury trials, for example, in case the location supports the use of a high-definition survey, or an object has to be altered after the accident and it has a specific influence on the case and needs to be recorded. However, consideration has to be made in its application and to ensure a fair trial, with emphasis being placed on the facts of the case and personal interpretation controlled.

Constraint Relaxation using User Interaction in Reactive Scheduling Environment (동적 스케줄링 문제에서 사용자 상호작용을 이용한 제약조건 완화)

  • Lee, Hoon;Jung, Jong Jin;Jo, Geun Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.132-142
    • /
    • 1998
  • In optical scanning holography, 3-D holographic information of an object is generated by 2-D active optical scanning. The optical scanning beam can be a time-dependent Gaussian apodized Fresnel zone plate. In this technique, the holographic information manifests itself as an electrical signal which can be sent to an electron-beam-addressed spatial light modulator for coherent image reconstruction. This technique can be applied to 3-D optical remote sensing especially for identifying flying objects. In this paper, we first briefly review optical scanning holography and analyze the resolution achievable with the system. We then present mathematical expression of real and virtual image which are responsible for holographic image reconstruction by using Gaussian beam profile.

  • PDF

The 3D Modeling Data Production Method Using Drones Photographic Scanning Technology (드론 촬영 기반 사진 스캐닝 기술을 활용한 3D 모델링데이터 생성방법에 관한 연구)

  • Lee, Junsang;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.874-880
    • /
    • 2018
  • 3D modeling is extensively used in the field of architecture, machinery and contents production such as movies. Modeling is a time-consuming task. In order to compensate for these drawbacks, attempts have recently been made to reduce the production period by applying 3D scanning technology. 3D scanning for small objects can be done directly with laser or optics, but large buildings and sculptures require expensive equipment, which makes it difficult to acquire data directly. In this study, 3D modeling data for a large object is acquired using photometry with using drones to acquire the image data. The maintenance method for uniform spacing between the sculpture and the drone, the measurement method for the flight line were presented. In addition, we presented a production environment that can utilize the obtained 3D point cloud data for animation and a rendered animation result to find ways to make it in various environments.

Adaptive Convolution Filter-Based 3D Plane Reconstruction for Low-Power LiDAR Sensor Systems (저전력 LiDAR 시스템을 위한 Adaptive Convolution Filter에 기반한 3D 공간 구성)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1416-1426
    • /
    • 2021
  • In the case of a scanning type multi-channel LiDAR sensor, the distance error called a walk error may occur due to a difference in received signal power. This work error causes different distance values to be output for the same object when scanning the surrounding environment based on multiple LiDAR sensors. For minimizing walk error in overlapping regions when scanning all directions using multiple sensors, to calibrate distance for each channels using convolution on external system. Four sensors were placed in the center of 6×6 m environment and scanned around. As a result of applying the proposed filtering method, the distance error could be improved by about 68% from average of 0.5125 m to 0.16 m, and the standard deviation could be improved by about 48% from average of 0.0591 to 0.030675.

Impact Damge and Residual Bending Strength of CFRP Composite Laminates Subjected to Impact Loading Fracture Mechanism and Impact Damage of Orthotropy Laminated Plates (충격하중을 받는 CFRP 적층판의 충격손상과 굽힘 잔류강도 직교 이방성 적층판의 충격손상과 파과메카니즘)

  • 심재기;양인영;오택열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2752-2761
    • /
    • 1993
  • The purpose of this study is to confirm the decreasing problems of residual bending strength, and the fracture machanism experimentally when CFRP composite laminates are subjected to Foreign Object Damage. Composite laminates used for this experiment are CFRP orthotropy laminated plates, which have two-interfaces [O/sub 6//sup o//90/sub 6//sup o/]sub sym/ and four-interfaces [O/sub 3//sup o//90/sub 6//sup o//O/sub 3//sup o]/sub sym/. When the specimen is subjected to transverse impact by a steel ball, the delamination area generated by impact damage is observed by using SAM(Scanning Acoustic Microscope). also, Thefracture surfaces obtained by three-point bending test were observed by using SEM (Scanning Electron Microscope). Then, fracture mechanism was investigated based on the observed delamination area and fracture surface. The results were summarized as follows; (1) It is found that for the specimen with more interface, the critical delamination energy is increased while delamination-development energy is decreased. (2) Residual bending strength of specimen A is greater than that of Specimen B within the impact range of impact energy 1. 65J (impacted-side compression) and 1. 45J (impacted-side tension). On the other hand, when the impact energy is beyond the above ranges, residual bending strength of specimen A is smaller than that of specimen B. (3) In specimen A and B, residual strength of CFRP plates subjected to impact damage is lower in the impacted-side compression than in the impacted-side tension. (4) In the case of impacted-side compression, fracture is propagated from the transverse crack generat-ed near impact point. On the other hand, fracture is developed toward the impact point from the edge of interface-B delamination in the case of impacted-side tension.

Design of ToF-Stereo Fusion Sensor System for 3D Spatial Scanning (3차원 공간 스캔을 위한 ToF-Stereo 융합 센서 시스템 설계)

  • Yun Ju Lee;Sun Kook Yoo
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.134-141
    • /
    • 2023
  • In this paper, we propose a ToF-Stereo fusion sensor system for 3D space scanning that increases the recognition rate of 3D objects, guarantees object detection quality, and is robust to the environment. The ToF-Stereo sensor fusion system uses a method of fusing the sensing values of the ToF sensor and the Stereo RGB sensor, and even if one sensor does not operate, the other sensor can be used to continuously detect an object. Since the quality of the ToF sensor and the Stereo RGB sensor varies depending on the sensing distance, sensing resolution, light reflectivity, and illuminance, a module that can adjust the function of the sensor based on reliability estimation is placed. The ToF-Stereo sensor fusion system combines the sensing values of the ToF sensor and the Stereo RGB sensor, estimates the reliability, and adjusts the function of the sensor according to the reliability to fuse the two sensing values, thereby improving the quality of the 3D space scan.

An Automatic Extraction Algorithm of Structure Boundary from Terrestrial LIDAR Data (지상라이다 데이터를 이용한 구조물 윤곽선 자동 추출 알고리즘 연구)

  • Roh, Yi-Ju;Kim, Nam-Woon;Yun, Kee-Bang;Jung, Kyeong-Hoon;Kang, Dong-Wook;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • In this paper, automatic structure boundary extraction is proposed using terrestrial LIDAR (Light Detection And Ranging) in 3-dimensional data. This paper describes an algorithm which does not use pictures and pre-processing. In this algorithm, an efficient decimation method is proposed, considering the size of object, the amount of LIDAR data, etc. From these decimated data, object points and non-object points are distinguished using distance information which is a major features of LIDAR. After that, large and small values are extracted using local variations, which can be candidate for boundary. Finally, a boundary line is drawn based on the boundary point candidates. In this way, the approximate boundary of the object is extracted.

Geometry-to-BIM Mapping Rule Definition for Building Plane BIM object (건축물 평면 형상에 대한 형상-to-BIM 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.236-242
    • /
    • 2019
  • Recently, scanning projects have been carried out in various construction and construction fields for maintenance purposes. The point cloud generated by the scan results is composed of a number of points representing the object to be scanned. The process of extracting the necessary information, including dimensions, from such scan data is called paradox. The reverse engineering process of modeling a point cloud as BIM involves considerable manual work. Owing to the time-consuming reverse engineering nature of the work, the costs increase exponentially when rework requests are made, such as design changes. Reverse engineering automation technology can help improve these problems. On the other hand, the reverse design product is variable depending on the use, and the kind and detail level of the product may be different. This paper proposes the G2BM (Geometry-to-BIM mapping) rule definition method that automatically maps a BIM object from a primitive geometry to a BIM object. G2BM proposes a process definition and a customization method for reverse engineering BIM objects that consider the use case variability.

Object Pose Estimation and Motion Planning for Service Automation System (서비스 자동화 시스템을 위한 물체 자세 인식 및 동작 계획)

  • Youngwoo Kwon;Dongyoung Lee;Hosun Kang;Jiwook Choi;Inho Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.176-187
    • /
    • 2024
  • Recently, automated solutions using collaborative robots have been emerging in various industries. Their primary functions include Pick & Place, Peg in the Hole, fastening and assembly, welding, and more, which are being utilized and researched in various fields. The application of these robots varies depending on the characteristics of the grippers attached to the end of the collaborative robots. To grasp a variety of objects, a gripper with a high degree of freedom is required. In this paper, we propose a service automation system using a multi-degree-of-freedom gripper, collaborative robots, and vision sensors. Assuming various products are placed at a checkout counter, we use three cameras to recognize the objects, estimate their pose, and create grasping points for grasping. The grasping points are grasped by the multi-degree-of-freedom gripper, and experiments are conducted to recognize barcodes, a key task in service automation. To recognize objects, we used a CNN (Convolutional Neural Network) based algorithm and point cloud to estimate the object's 6D pose. Using the recognized object's 6d pose information, we create grasping points for the multi-degree-of-freedom gripper and perform re-grasping in a direction that facilitates barcode scanning. The experiment was conducted with four selected objects, progressing through identification, 6D pose estimation, and grasping, recording the success and failure of barcode recognition to prove the effectiveness of the proposed system.