• Title/Summary/Keyword: object dynamics

Search Result 204, Processing Time 0.032 seconds

A Study on Stable Grasping Motion Control of Dual-Finger (듀얼-핑거의 안정적 파지 운동 제어에 관한 연구)

  • Um Hyuk;Choi Jong-Hwan;Kim Seung-Soo;Han Hyun-Yong;Yang Soon-Yong;Lee Jin-Gul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.81-88
    • /
    • 2005
  • This paper attempts to derive the dynamic model of handling tasks in finger robot which grasps stable and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, the roblems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. The effect of geometric constraints of area-contacts between the link's end-effector and the object is analyzed and the model based on the differential-algebraic equations is presented. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation and the experiment that the control system gives the performance improvement in the dynamic stable grasping and nimble manipulating of the dual fingers robot with soft tips.

Gain-Tuning of Sensory Feedback for a Multi-Fingered Hand Based on Muscle Physiology

  • Bae, J.H.;Arimoto, S.;Shinsuke, N.;Ozawa, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1994-1999
    • /
    • 2003
  • This paper discusses dynamic characteristics of motion of a pair of multi-degrees of freedom robot fingers executing grasp of a rigid object and controlling its orientation with the aid of rolling contacts. In particular, the discussions are focused on a problem of gain-tuning of sensory feedback signals proposed from the viewpoint of sensorymotor coordination, which consist of a feedforward term, a feedback term for controlling rotational moment of the object, and another term for controlling its rotational angle. It is found through computer simulations of the overall fingersobject dynamics subject to rolling contact constraints that some dynamic characteristics of torque-angular velocity relation may play an important role likely as reported by experimental results in muscle physiology and therefore selection of damping gains in angular velocity feedback depending on the guess of object mass is crucial. Finally, a guidance of gain-tuning in each feedback term is suggested and its validity is discussed by various computer simulations.

  • PDF

Transient Stability Analysis Based on OOP (객체지향기반 과도 안정도 해석)

  • Park, Ji-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents the new method of power system transient stability simulation, which combines the desirable features of both the time domain technique based on OOP(Object-oriented Programming) and the direct method of transient stability analysis using detailed generator model. OOP is an alternative to overcome the problems associated with the development, maintenance and update of large software by electrical utilities. Several papers have already evaluated this approach for power system applications in areas such as load flow, security assessment and graphical interface. This paper applied the object-oriented approach to the problem of power system dynamics simulation. The modeling method is that each block of dynamic system block diagram is implemented as an object and connected each other. In the transient energy method, the detailed synchronous generator model is so-called two-axis model. For the excitation model, IEEE type1 model is used. The developed mothed was successfully applied to New England Test System.

Robust Visual Tracking for 3-D Moving Object using Kalman Filter (칼만필터를 이용한 3-D 이동물체의 강건한 시각추적)

  • 조지승;정병묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1055-1058
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is the use of different model (CAD model etc.) known a priori. Also fusion or multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Voting-based fusion of cues is adapted. In voting. a very simple or no model is used for fusion. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters. namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

OpenFOAM : Open source CFD in research and industry

  • Jasak, Hrvoje
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2009
  • The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries of practical engineering use in "non-traditional" areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form of partial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

EDISON Co-rotational Plane Beam-Transient anlaysis를 이용한 Energy method방법의 충격량해석 및 타격중심 매개변수 연구

  • Kim, SangHyeok;Lee, SangGu;Shin, SangJoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.194-203
    • /
    • 2017
  • The center of percussion(COP) is the point of an extended massive object attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot. COP is an important concept in the field of vibration and dynamics. In vibration, COP causes reduction of vibration and in dynamics, it brings about maximum speed of an object. Many studies about COP are still in progress. However most of the researches have typically focused on the method of mathematical and numerical anlalysis. In this paper, impact analysis was proved by the mechanical energy method using EDISON co-rotational plane beam transient analysis program. The result expressed in acceleration was the relative magnitude of the impulse, which was the indicator of COP. Then, these results were compared with the reference thesis results for exact consequences. Additionally, parametric study of COP was conducted.

  • PDF

Sector Based Multiple Camera Collaboration for Active Tracking Applications

  • Hong, Sangjin;Kim, Kyungrog;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1299-1319
    • /
    • 2017
  • This paper presents a scalable multiple camera collaboration strategy for active tracking applications in large areas. The proposed approach is based on distributed mechanism but emulates the master-slave mechanism. The master and slave cameras are not designated but adaptively determined depending on the object dynamic and density distribution. Moreover, the number of cameras emulating the master is not fixed. The collaboration among the cameras utilizes global and local sectors in which the visual correspondences among different cameras are determined. The proposed method combines the local information to construct the global information for emulating the master-slave operations. Based on the global information, the load balancing of active tracking operations is performed to maximize active tracking coverage of the highly dynamic objects. The dynamics of all objects visible in the local camera views are estimated for effective coverage scheduling of the cameras. The active tracking synchronization timing information is chosen to maximize the overall monitoring time for general surveillance operations while minimizing the active tracking miss. The real-time simulation result demonstrates the effectiveness of the proposed method.

The study of a Vehicle Dynamic Simulation Including Powertrain About the Coordinate System Connectivity (좌표계 연성에 의한 동력전달계 포함 차량 운동 시뮬레이션 연구)

  • Jung Il Ho;Yang Hong Ik;Yoon Ji Won;Park Tae Won;Han Hyung Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.130-137
    • /
    • 2005
  • Recently, the importance of CAE research is growing with the advances of the automotive and computer industry. In addition, multi-body dynamics and powertrain analysis are the most important factors in improving the vehicle design. Since engine torque with curve-data was used for analyzing full car simulation in the multi-body dynamics system for many years, it is impossible to assess the concurrent analysis of the engine and powertrain element included in a real full car system. In powertrain, since vehicle are usually modeled as a simple mass and a inertia, they can not be seen as real cars. Moreover, it is hard to obtain additional dynamics data other than the longitudinal velocity value in movement. Because of the reason that was previously discussed, it is necessary to consolidate the two parts as one routine program for design and development through the coordinate system connectivity, and presented here is a program named O-DYN. Using an object-oriented language C++, this program has a good structure with the valuable characteristics of objectivity, inheritance, and reusability. The reliability of this multi-body dynamics program is examined by DADS, which is the general dynamics program, using DAE solver and PECE integral function with the common coordinator separation method. As a result, we can obtain a better solution and total dynamics data in either area through this process. This program will be useful for analyzing full car simulation with powertrain.

Dynamic Analysis of Multi-Robot System Forcing Closed Kinematic Chain (복수로봇 시스템의 동력학적 연구-대상물과 닫힌 체인을 형성할때의 문제-)

  • 유범상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1023-1032
    • /
    • 1995
  • The multiple cooperating robot system plays an important role in the research of modern manufacturing system as the emphasis of production automation is more on the side of flexibility than before. While the kinematic and dynamic analysis of a single robot is performed as an open-loop chain, the dynamic formulation of robot in a multiple cooperating robot system differs from that of a single robot when the multiple cooperating robots form a closed kinematic chain holding an object simultaneously. The object may be any type from a rigid body to a multi-joint linkage. The mobility of the system depends on the kinematic configuration of the closed kinematic chain formed by robots and object, which also decides the number of independent input parameters. Since the mobility is not the same as the number of robot joints, proper constraint condition is sought. The constraints may be such that : the number of active robot joints is kept the same as mobility, all robot joints are active and have interrelations between each joint forces/torques, two robots have master-slave relation, or so on. The dynamic formulation of system is obtained. The formulation is based on recursive dual-number screw-calculus Newton-Eulerian approach which has been used for single robot analysis. This new scheme is recursive and compact symbolically and may facilitate the consideration of the object in real time.

A Study on Model and Control of Pinching Motion for Multi-Fingered Robot (다관절 핑거 로봇의 파지 운동 모델과 제어에 관한 연구)

  • Um H.;Choi J.H.;Kim Y.S.;Yang S.S.;Lee J.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1060-1067
    • /
    • 2005
  • This paper attempts to derive and analyze the dynamic system of pinching a rigid object by means of two multi-degrees-of-freedom robot fingers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

  • PDF