• Title/Summary/Keyword: object dynamics

Search Result 204, Processing Time 0.038 seconds

Development of Robot Simulator for Palletizing Operation Management S/W and Fast Algorithm for 'PLP' (PLP 를 위한 Fast Algorithm 과 팔레타이징 작업 제어 S/W 를 위한 로봇 시뮬레이터 개발)

  • Lim, Sung-Jin;Kang, Maing-Kyu;Han, Chang-Soo;Song, Young-Hoon;Kim, Sung-Rak;Han, Jeong-Su;Yu, Seung-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.609-616
    • /
    • 2007
  • Palletizing is necessary to promote the efficiency of storage and shipping tasks. These are, however some of the most monotonous, heavy and laborious tasks in the factory. Therefore many types of robot palletizing systems have been developed, but many robot motion commands still depend on the teaching pendent. That is, an operator inputs the motion command lines one by one. It is very troublesome, and most of all, the user must know how to type the code. That is why we propose a new GUI (Graphic User Interface) Palletizing System. To cope with this issue, we proposed a 'PLP' (Pallet Loading Problem) algorithm, Fast Algorithm and realize 3D auto-patterning visualization interface. Finally, we propose the robot palletizing simulator. Internally, the schematic of this simulator is as follows. First, an user inputs the physical information of object. Second, simulator calculates the optimal pattern for the object and visualizes the result. Finally, the calculated position data of object is passed to the robot simulator. To develop the robot simulator, we use an articulated robot, and analyze the kinematics and dynamics. Especially, All problem including thousands of boxes were completely calculated in less than 1 second and resulted in optimal solutions by the Fast Algorithm.

Electroluminescence(EL)와 그의 응용

  • 이성오
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.4
    • /
    • pp.15-20
    • /
    • 1991
  • The paper considers a distributed adaptive control technique for industrial robots which contribute to the factory automation. The control object is to tracking for a desired trajectories under various load conditions., rapidly against load variation these control techniques divided whole system into subsystems which is controlled with the nominal and adaptation controllers, and also the asymptotic stability of these substem was proved. Simulation results shown that the proposed techniques was feasible in spite of nonlinear dynamics of robot manipulator and payload variations.

  • PDF

Simulation Analysis on Flexible Multibody Dynamics of Drum Brake System of a Vehicle

  • Liu, Yi;Hu, Wen-Zhuan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.125-130
    • /
    • 2015
  • Using flexible multibody system dynamic method, the rigid-flexible coupling multibody dynamic analysis model of the drum brake system was developed, and the kinematic and dynamic simulation of the system was processed as its object of study. Simulations show that the friction will increase with the dynamic friction coefficient, but high dynamic friction coefficient will cause the abnormal vibration and worsen the stability of the brake system, even the stability of the whole automobile. The modeling of flexible multi-body can effectively analyze and solve complex three-dimensional dynamic subjects of brake system and evaluate brake capability. Further research and study on this basis will result in a convenient and effective solution that can be much helpful to study, design and development of the brake system.

Interactive Dynamic Simulation Schemes for Articulated Bodies through Haptic Interface

  • Son, Wook-Ho;Kim, Kyung-Hwan;Jang, Byung-Tae;Choi, Byung-Tae
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • This paper describes interactive dynamic simulation schemes for articulated bodies in virtual environments, where user interaction is allowed through a haptic interface. We incorporated these schemes into our dynamic simulator I-GMS, which was developed in an object-oriented framework for simulating motions of free bodies and complex linkages, such as those needed for robotic systems or human body simulation. User interaction is achieved by performing push and pull operations with the PHANToM haptic device, which runs as an integrated part of I-GMS. We use both forward and inverse dynamics of articulated bodies for the haptic interaction by the push and pull operations, respectively. We demonstrate the user-interaction capability of I-GMS through on-line editing of trajectories for 6-dof (degrees of freedom) articulated bodies.

  • PDF

A modeling of the magnetic levitation stage and its control

  • Nam, Taek-Kun;Kim, Yong-Joo;Jeon, Jeong-Woo;Lee, Ki-Chang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1082-1087
    • /
    • 2003
  • In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive levitation object called a platen This stage can generate six degrees of freedom motion by the vertical and horizontal force. We derived the mechanical dynamics equation using lagrangian method and used coenergy to express an electromagnetic force. We proposed control algorithm for the position and posture control from its initial value to its desired value using sliding mode control. Some simulation result is provided to verify the effectiveness of the proposed control scheme.

  • PDF

Display of operating feel of virtual tool in frictional contact with elastically deforming environment (마찰을 고려한 탄성변형 환경과 접촉하는 가상도구의 조작감 제시)

  • Choi, Hyoukryeol;Lee, Seungryong;Ryew, Sungmoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.790-800
    • /
    • 1998
  • This paper presents a haptic rendering algorithm in the case that the virtual environment elastically deforms in response to the force applied by a user with a virtual tool. Considering friction, elasticity, multiple contacts and dynamics of the virtual object, this algorithm lets the operator have the feel of interactions in the virtual environment as close as to the reality. Based on the proposed algorithm several experiments are conducted and its effectiveness is confirmed.

Modeling of a Magnetic Levitation Stage and its Control (자기부상 스테이지의 모델링과 제어)

  • Yong-Joo, Kim;Jeong-Woo, Jeon;Taek-Kun, Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.906-915
    • /
    • 2004
  • In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for driving levitation object called a platen. This stage can generate six degrees of freedom motion by the vertical and horizontal force. We derived the mechanical dynamics equation using Lagrangian method and used coenergy to express an electromagnetic force. We proposed a control algorithm for the position and posture control from its initial value to its desired value using sliding mode control. Some simulation results are provided to verify the effectiveness of the proposed control scheme.

Simulation Study of Cardiovascular Response to Hemodialysis (혈액투석 중 심혈관계 응답의 수치적 연구)

  • 임기무;민병구;고형종;심은보
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1236-1239
    • /
    • 2004
  • The object of this study is to develop a model of the cardiovascular system capable of simulating the short-term transient and steady-state hemodynamic responses such as hypotention and disequilibrium syndrome during hemodialysis or hemofiltration. The model consists of a closed loop 12 lumped-parameter representation of the cardiovascular circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes and 3 compartmental body fluid and solute kinetic model. The hemodialysis model includes the dynamics of sodium, urea, and potassium in the intracellular and extracellular pools, fluid balance equations for the intracellular, interstitial, and plasma volumes. We have presented the results of many different simulations performed by changing a few model parameters with respect to their basal values.

  • PDF

Development of an Operating Software for the Manufacturing Cell of a Model Plant (제조 셀 모델 플랜트의 운영 소프트웨어의 개발)

  • Lee, Jun-Su;Kim, Jong-Keun;Jeong, Byung-Ho
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.364-373
    • /
    • 2002
  • This paper developed an operating software for the manufacturing cell of a model plant. The model plant, which was manufactured by Fishertechnik, consists of an assembly cell, a machining cell, and supplementary material handling equipments. Each I/O module of the model plant communicates with the INTERBUS controller devices via High-level Language Interface(HLI). The machining center has two machining cells, which consists of 4 machines respectively, two 3-axis portal transporters, and a rail guided vehicle(RGV). The Petri-Net was used to investigate the dynamics of each machining cell, e.g., the relation of material handling equipments and machines. The operating software was analyzed and designed by Object Oriented Technique. The software was implemented using Delphi 3.0 under Windows 95/NT operating system.

A STUDY ON THE NURBS GRID GENERATION AND GRID CONTROL (NURBS를 이용한 격자생성 및 제어기법)

  • Yoon, Yong-Hyun
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • A fast and robust method of grid generation to multiple functions has been developed for flow analysis in three dimensional space. It is based on the Non-Uniform Rational B-Spline(NURBS) of an approximation method. Many of NURBS intrinsic properties are introduced and much more easily understood. The grid generation method, details of numerical implementation. examples of application, and potential extensions of the current method are illustrated in this paper. The object of this study is to develop the surface grid generation and the grid cluster techniques capable of resolving complex flows with shock waves, expansion waves, shear layers. The knot insert method of Non-Uniform Rational B-Spline seems well worked. In addition, NURBS has been widely utilized to generate grids in the computational fluid dynamics community. Computational examples associated with practical configurations have shown the utilization of the algorithm.