Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.7
/
pp.890-895
/
2021
Recently, the "Act of Serious Disasters, etc" was enacted and institutional and social interest in safety accidents is increasing. In this paper, we analyze statistical data published by government agency on safety accidents that occur in manufacturing sites, and compare various object detection models based on deep learning to build a model to determine dangerous situations to reduce the occurrence of safety accidents. The data-set was directly constructed by collecting images from CCTVs at the manufacturing site, and the YOLO-v4, SSD, CenterNet models were used as training data and evaluation data for learning. As a result, the YOLO-v4 model obtained a value of 81% of mAP. It is meaningful to select a class in an industrial field and directly build a dataset to learn a model, and it is thought that it can be used as an initial research data for a system that determines a risk situation and infers it.
In this paper, we propose an innovative approach that leverages deep learning to find optimal reference points for achieving precise tooth segmentation in three-dimensional tooth point cloud data. A dataset consisting of 350 aligned maxillary and mandibular cloud data was used as input, and both end coordinates of individual teeth were used as correct answers. A two-dimensional image was created by projecting the rendered point cloud data along the Z-axis, where an image of individual teeth was created using an object detection algorithm. The proposed algorithm is designed by adding various modules to the Unet model that allow effective learning of a narrow range, and detects both end points of the tooth using the generated tooth image. In the evaluation using DSC, Euclid distance, and MAE as indicators, we achieved superior performance compared to other Unet-based models. In future research, we will develop an algorithm to find the reference point of the point cloud by back-projecting the reference point detected in the image in three dimensions, and based on this, we will develop an algorithm to divide the teeth individually in the point cloud through image processing techniques.
Donggun Lee;Jooseon Oh;Youngtae Choi;Donggeon Lee;Hongjeong Lee;Sung-Bo Shim;Yushin Ha
Korean Journal of Agricultural Science
/
v.50
no.3
/
pp.415-424
/
2023
The task of sorting and excluding blemished apples and others that lack commercial appeal is currently performed manually by human eye sorting, which not only causes musculoskeletal disorders in workers but also requires a significant amount of time and labor. In this study, an automated apple-sorting machine was developed to prevent musculoskeletal disorders in apple production workers and to streamline the process of sorting blemished and non-marketable apples from the better quality fruit. The apple-sorting machine is composed of an arm-rest, a main body, and a height-adjustable part, and uses object detection through a machine learning technology called 'You Only Look Once (YOLO)' to sort the apples. The machine was initially trained using apple image data, RoboFlow, and Google Colab, and the resulting images were analyzed using Jetson Nano. An algorithm was developed to link the Jetson Nano outputs and the conveyor belt to classify the analyzed apple images. This apple-sorting machine can immediately sort and exclude apples with surface defects, thereby reducing the time needed to sort the fruit and, accordingly, achieving cuts in labor costs. Furthermore, the apple-sorting machine can produce uniform quality sorting with a high level of accuracy compared with the subjective judgment of manual sorting by eye. This is expected to improve the productivity of apple growing operations and increase profitability.
An, Eung-Seop;Jang, Il-Young;Lee, Jae-Kang;Kim, Il-Hwan
Journal of Industrial Technology
/
v.21
no.B
/
pp.67-74
/
2001
According as the patterns of PCB (Printed Circuit Board) become denser and complicated, quality and accuracy of PCB influence the performance of final product. It's attempted to obtain trust of 100% about all of parts. Because human inspection in mass-production manufacturing facilities are both time-consuming and very expensive, the automation of visual inspection has been attempted for many years. Thus, automatic visual inspection of PCB is required. In this paper, we used an algorithm which compares the reference PCB patterns and the input PCB patterns are separated an object and a scene by filtering and edge detection. And than compare two image using pattern matching algorithm. We suggest an defect inspection algorithm in PCB pattern, to be satisfied low cost, high speed, high performance and flexibility on the basis of $640{\times}480$ binary pattern.
Journal of Korean Institute of Industrial Engineers
/
v.20
no.1
/
pp.53-69
/
1994
Deadlock in flexible manufacturing systems (FMS) which refers to the stop state of job flow in the system can be commonly occurred in operating FMS. This state mainly due to bad movements of jobs and commonly job routings should be avoided to maximize the utilization of high-capital resources in this study, the deadlock generated from the conflict between flow objects competing to occupy space resources in FMS is investigated. Capacity Designated Directed Graph (CDG) is constructed to represent the space resources and flow object routings. From the characteristics of CDG, an algorithm for the detection of the deadlock possibility is proposed. Finally two deadlock avoidance rule are proposed and implemented in the control on Automated Guided Vehicle system in an FMS.
Pedestrian tracking is a particular problem of object tracking, and an important component in various vision-based applications, such as autonomous cars or surveillance systems. After several years of development, pedestrian tracking in videos is still a challenging problem because of various visual properties of objects and surrounding environment. In this research, we propose a tracking-by-detection system for pedestrian tracking, which incorporates Convolutional Neural Network (CNN) and color information. Pedestrians in video frames are localized by a CNN, then detected pedestrians are assigned to their corresponding tracklets based on similarities in color distributions. The experimental results show that our system was able to overcome various difficulties to produce highly accurate tracking results.
HAR(Human Action Recognition) such as anomaly and object detection has become a trend in research field(s) that focus on utilizing Artificial Intelligence (AI) methods to analyze patterns of human action in crime-ridden area(s), media services, and industrial facilities. Especially, in real-time system(s) using video streaming data, HAR has become a more important AI-based research field in application development and many different research fields using HAR have currently been developed and improved. In this paper, we propose and analyze a deep-learning-based HAR that provides more efficient scheme(s) using an intelligent AI models, such system can be applied to media services using RGB video streaming data usage without feature extraction pre-processing. For the method, we adopt Slowfast based on the Deep Neural Network(DNN) model under an open dataset(HMDB-51 or UCF101) for improvement in prediction accuracy.
Interstellar objects (ISOs) provide essential information on the physical and chemical properties of the environment when extrasolar systems are formed. Since 2017, two interstellar objects, 1I/2017 ('Oumuamua) and C/2019 Borisov, have been observed passing our solar system. The first interstellar object, named 1I/2017 ('Oumuamua), exhibits several peculiar properties that cannot be explained based on our knowledge of solar system objects, including extreme elongation and non-gravitational acceleration. Its nature and origins remain a mystery. In this talk, I will first describe the basic observational properties of 'Oumuamua and review various theories proposed to explain these features. I will then present our results, ruling out the most promising proposal that 'Oumuamua was made out of molecular hydrogen ice (solid hydrogen). Finally, I will discuss prospects for the detection of ISOs with LSST and in-depth research through multi-wavelength and tracers.
Wei-Chih Chern;Kichang Choi;Vijayan Asari;Hongjo Kim
International conference on construction engineering and project management
/
2024.07a
/
pp.423-430
/
2024
The task of vision safety monitoring in construction environments presents a formidable challenge, owing to the dynamic and heterogeneous nature of these settings. Despite the advancements in artificial intelligence, the nuanced analysis of small or tiny personal protective equipment (PPE) remains a complex endeavor. In response to this challenge, this paper introduces an innovative safety monitoring system, specifically designed to enhance the safety monitoring of working both at ground level and at elevated heights. This novel system integrates a suite of sophisticated technologies: instance segmentation, shape classification, object tracking, a visualization report, and a real-time notification module. Collectively, these components coalesce to deliver a safety monitoring solution, ensuring a higher standard of protection for construction workers. The experimental results…..
KIPS Transactions on Software and Data Engineering
/
v.3
no.6
/
pp.237-242
/
2014
Current digital door lock systems are mainly designed for users' convenience, so they have weakness in security. Thus, this paper suggests a video digital doorlock system grouped with a relay device, a server, and a digital doorlock with a camera, sensors, and communication modules, which is detecting or recognizing objects approaching to the front of the door lock system and sending images and door-opening information to users' smart devices. Experiments showed that the suggested system has 96~98% recognition rate of approaching objects and requires 17.1~23.9 seconds for transmission on average, depending on network systems. Therefore, the system is thought to have enough capability for real time security response by monitoring the front area of the doorlock system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.