• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.028 seconds

Detection of Breathing Rates in Through-wall UWB Radar Utilizing JTFA

  • Liang, Xiaolin;Jiang, Yongling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5527-5545
    • /
    • 2019
  • Through-wall ultra-wide band (UWB) radar has been considered as one of the preferred and non-contact technologies for the targets detection owing to the better time resolution and stronger penetration. The high time resolution is a result of a larger of bandwidth of the employed UWB pulses from the radar system, which is a useful tool to separate multiple targets in complex environment. The article emphasised on human subject localization and detection. Human subject usually can be detected via extracting the weak respiratory signals of human subjects remotely. Meanwhile, the range between the detection object and radar is also acquired from the 2D range-frequency matrix. However, it is a challenging task to extract human respiratory signals owing to the low signal to clutter ratio. To improve the feasibility of human respiratory signals detection, a new method is developed via analysing the standard deviation based kurtosis of the collected pulses, which are modulated by human respiratory movements in slow time. The range between radar and the detection target is estimated using joint time-frequency analysis (JTFA) of the analysed characteristics, which provides a novel preliminary signature for life detection. The breathing rates are obtained using the proposed accumulation method in time and frequency domain, respectively. The proposed method is validated and proved numerically and experimentally.

The Development of Efficient Multimedia Retrieval System of the Object-Based using the Hippocampal Neural Network (해마신경망을 이용한 관심 객체 기반의 효율적인 멀티미디어 검색 시스템의 개발)

  • Jeong Seok-Hoon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.57-64
    • /
    • 2006
  • Tn this paper, We propose a user friendly object-based multimedia retrieval system using the HCNN(HippoCampus Neural Network. Most existing approaches to content-based retrieval rely on query by example or user based low-level features such as color, shape, texture. In this paper we perform a scene change detection and key frame extraction for the compressed video stream that is video compression standard such as MPEG. We propose a method for automatic color object extraction and ACE(Adaptive Circular filter and Edge) of content-based multimedia retrieval system. And we compose multimedia retrieval system after learned by the HCNN such extracted features. Proposed HCNN makes an adaptive real-time content-based multimedia retrieval system using excitatory teaming method that forwards important features to long-term memories and inhibitory learning method that forwards unimportant features to short-term memories controlled by impression.

An Camera Information Detection Method for Dynamic Scene (Dynamic scene에 대한 카메라 정보 추출 기법)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.275-280
    • /
    • 2013
  • In this paper, a new stereo object extraction algorithm using a block-based MSE (mean square error) algorithm and the configuration parameters of a stereo camera is proposed. That is, by applying the SSD algorithm between the initial reference image and the next stereo input image, location coordinates of a target object in the right and left images are acquired and then with these values, the pan/tilt system is controlled. And using the moving angle of this pan/tilt system and the configulation parameters of the stereo camera system, the mask window size of a target object is adaptively determined. The newly segmented target image is used as a reference image in the next stage and it is automatically updated in the course of target tracking basing on the same procedure. Meanwhile, a target object is under tracking through continuously controlling the convergence and FOV by using the sequentiall extracted location coordinates of a moving target.

Fuzzy Screen Detector for a Vision Based Pointing Device (비젼 기반의 포인팅 기기를 위한 퍼지 스크린 검출기)

  • Kho, Jae-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.297-302
    • /
    • 2009
  • In this paper, we propose advanced screen detector as a tool for selecting the object for tracking and estimating its distance from a screen using fuzzy logic in vision based pointing device. Our system classifies the line component of the input image into horizontal and vertical lines and applies the fuzzy rule to obtain the best line pair which constitute peripheral framework of the screen. The proposed system improves the detection ratio for detecting the screen in relative to the detector used in the previous works for hand-held type vision based pointing device. Also it allows to detect the screen even though a small part of it may be hidden behind other object.

Camera Calibration and Pose Estimation for Tasks of a Mobile Manipulator (모바일 머니퓰레이터의 작업을 위한 카메라 보정 및 포즈 추정)

  • Choi, Ji-Hoon;Kim, Hae-Chang;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.350-356
    • /
    • 2020
  • Workers have been replaced by mobile manipulators for factory automation in recent years. One of the typical tasks for automation is that a mobile manipulator moves to a target location and picks and places an object on the worktable. However, due to the pose estimation error of the mobile platform, the robot cannot reach the exact target position, which prevents the manipulator from being able to accurately pick and place the object on the worktable. In this study, we developed an automatic alignment system using a low-cost camera mounted on the end-effector of a collaborative robot. Camera calibration and pose estimation methods were also proposed for the automatic alignment system. This algorithm uses a markerboard composed of markers to calibrate the camera and then precisely estimate the camera pose. Experimental results demonstrate that the mobile manipulator can perform successful pick and place tasks on various conditions.

Deep Quiz Cropping for Construction of Quiz Pool in Online Quiz System (온라인 퀴즈 시스템의 문제은행 구축 자동화를 위한 Deep Quiz Cropping 기술 개발)

  • Jeong, Dae-Wook;Jeong, Mun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1187-1194
    • /
    • 2020
  • We presented a method of deep quiz cropping for automatic construction of quiz pool in online quiz systems. The method detects question boxes and sunda boxes in images captured from test papers by a deep learning-based object detector, and makes pairs of question box and sunda box by the box coupling. We applied the deep quiz cropping to images captured from test papers and achieved successful results.

Development of Omnidirectional Object Detecting Technology for a Safer Excavator (굴삭기 작업영역의 전방위 장애물 탐지기술 개발)

  • Soh, Ji-Yune;Lee, Jun-Bok;Han, Choong-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.105-112
    • /
    • 2010
  • The demand for the development of automated construction equipments is gradually increasing to deal with the current problems of construction technology, such as a lack of experienced workers, the aging of engineers, safety issues, etc. In particular, earth work such as excavation is very machine-dependent, and there has been a great deal of research on the development of an intelligent excavator, which involves great safety concerns. Thus, the objective of this study is to develop the technology to enhance the safety of intelligent excavation systems by developing an omnidirectional object detection technology for the intelligent excavator and applying it to a user-friendly system. The existing literature was reviewed, and the function of various sensor technologies was investigated and analyzed. Then, the best laser sensor was selected for an experiment to determine its effectiveness. An omnidirectional object detection algorithm was developed for a user interface program, and this can be used as the fundamental technology for the development of a safety management system for an intelligent excavator.

Implementation of a Classification System for Dog Behaviors using YOLI-based Object Detection and a Node.js Server (YOLO 기반 개체 검출과 Node.js 서버를 이용한 반려견 행동 분류 시스템 구현)

  • Jo, Yong-Hwa;Lee, Hyuek-Jae;Kim, Young-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This paper implements a method of extracting an object about a dog through real-time image analysis and classifying dog behaviors from the extracted images. The Darknet YOLO was used to detect dog objects, and the Teachable Machine provided by Google was used to classify behavior patterns from the extracted images. The trained Teachable Machine is saved in Google Drive and can be used by ml5.js implemented on a node.js server. By implementing an interactive web server using a socket.io module on the node.js server, the classified results are transmitted to the user's smart phone or PC in real time so that it can be checked anytime, anywhere.

Object Recognition Using Convolutional Neural Network in military CCTV (합성곱 신경망을 활용한 군사용 CCTV 객체 인식)

  • Ahn, Jin Woo;Kim, Dohyung;Kim, Jaeoh
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.2
    • /
    • pp.11-20
    • /
    • 2022
  • There is a critical need for AI assistance in guard operations of Army base perimeters, which is exacerbated by changes in the national defense and security environment such as force reduction. In addition, the possibility for human error inherent to perimeter guard operations attests to the need for an innovative revamp of current systems. The purpose of this study is to propose a real-time object detection AI tailored to military CCTV surveillance with three unique characteristics. First, training data suitable for situations in which relatively small objects must be recognized is used due to the characteristics of military CCTV. Second, we utilize a data augmentation algorithm suited for military context applied in the data preparation step. Third, a noise reduction algorithm is applied to account for military-specific situations, such as camouflaged targets and unfavorable weather conditions. The proposed system has been field-tested in a real-world setting, and its performance has been verified.

Development of A Multi-sensor Fusion-based Traffic Information Acquisition System with Robust to Environmental Changes using Mono Camera, Radar and Infrared Range Finder (환경변화에 강인한 단안카메라 레이더 적외선거리계 센서 융합 기반 교통정보 수집 시스템 개발)

  • Byun, Ki-hoon;Kim, Se-jin;Kwon, Jang-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.36-54
    • /
    • 2017
  • The purpose of this paper is to develop a multi-sensor fusion-based traffic information acquisition system with robust to environmental changes. it combines the characteristics of each sensor and is more robust to the environmental changes than the video detector. Moreover, it is not affected by the time of day and night, and has less maintenance cost than the inductive-loop traffic detector. This is accomplished by synthesizing object tracking informations based on a radar, vehicle classification informations based on a video detector and reliable object detections of a infrared range finder. To prove the effectiveness of the proposed system, I conducted experiments for 6 hours over 5 days of the daytime and early evening on the pedestrian - accessible road. According to the experimental results, it has 88.7% classification accuracy and 95.5% vehicle detection rate. If the parameters of this system is optimized to adapt to the experimental environment changes, it is expected that it will contribute to the advancement of ITS.