• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.031 seconds

Vehicle Classification and Tracking based on Deep Learning (딥러닝 기반의 자동차 분류 및 추적 알고리즘)

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.161-165
    • /
    • 2023
  • One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

  • PDF

Analysis of the Effect of Deep-learning Super-resolution for Fragments Detection Performance Enhancement (파편 탐지 성능 향상을 위한 딥러닝 초해상도화 효과 분석)

  • Yuseok Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.234-245
    • /
    • 2023
  • The Arena Fragmentation Test(AFT) is designed to analyze warhead performance by measuring fragmentation data. In order to evaluate the results of the AFT, a set of AFT images are captured by high-speed cameras. To detect objects in the AFT image set, ResNet-50 based Faster R-CNN is used as a detection model. However, because of the low resolution of the AFT image set, a detection model has shown low performance. To enhance the performance of the detection model, Super-resolution(SR) methods are used to increase the AFT image set resolution. To this end, The Bicubic method and three SR models: ZSSR, EDSR, and SwinIR are used. The use of SR images results in an increase in the performance of the detection model. While the increase in the number of pixels representing a fragment flame in the AFT images improves the Recall performance of the detection model, the number of pixels representing noise also increases, leading to a slight decreases in Precision performance. Consequently, the F1 score is increased by up to 9 %, demonstrating the effectiveness of SR in enhancing the performance of the detection model.

A Study on the Smart Care System Using Real-time Object Tracking Technology (실시간 객체 추적 기술을 활용한 스마트 케어 시스템에 대한 연구)

  • Kim, HyeJeong;Kang, MinGu;Lee, HyeGyu;Ko, Dongbeom;Kim, JeongJoon;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.243-250
    • /
    • 2018
  • This paper designs and implements a smart care system for the senior citizen who lives alone. Recently, as the level of living has increased due to the rapid improvement of medicine, living standard and environment, the proportion of the elderly population is increasing. In addition, the proportion of the elderly living alone, which is increasing with the aging society, suggests that the provision of services such as the elder care system and emergency notification is becoming an important issue. However, since the existing emergency notification technology analyzes fixed CCTV images, it is difficult to monitor in the blind spot of CCTV and to move to a place where the camera is not installed. There is a problem that it can not be performed. Therefore, in this paper, we design and develop a smart care system that utilizes robot and object tracking technology that can move in real time to overcome these shortcomings. This enables real-time monitoring regardless of the location, and prompts for assistance in case of an emergency, so that it can provide convenience to cares and assistants.

A Highly Reliable Fall Detection System for The Elderly in Real-Time Environment (실시간 환경에서 노인들을 위한 고신뢰도 낙상 검출 시스템)

  • Lee, Young-Sook;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.401-406
    • /
    • 2008
  • Fall event detection is one of the most common problems for elderly people, especially those living alone because falls result in serious injuries such as joint dislocations, fractures, severe head injuries or even death. In order to prevent falls or fall-related injuries, several previous methods based on video sensor showed low fall detection rates in recent years. To improve this problem and outperform the system performance, this paper presented a novel approach for fall event detection in the elderly using a subtraction between successive difference images and temporal templates in real time environment. The proposed algorithm obtained the successful detection rate of 96.43% and the low false positive rate of 3.125% even though the low-quality video sequences are obtained by a USB PC camera sensor. The experimental results have shown very promising performance in terms of high detection rate and low false positive rate.

The Role of the Pattern Edge in Goldfish Visual Motion Detection

  • Kim, Sun-Hee;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.413-417
    • /
    • 2010
  • To understand the function of edges in perception of moving objects, we defined four questions to answer. Is the focus point in visual motion detection of a moving object: (1) the body or the edge of the object, (2) the leading edge or trailing edge of the object, (3) different in scotopic, mesopic and photopic luminance levels, or (4) different for colored objects? We measured the Optomotor Response (OMR) and Edge Triggering Response (ETR) of goldfish. We used a square and sine wave patterns with black and red stripes and a square wave pattern with black and grey stripes to generate OMR's and ETR's in the goldfish. When we used black and red stripes, the black leading edges stimulated an ETR under scotopic conditions, red leading edges stimulated an ETR under photopic conditions, and both black and red leading edges stimulated an ETR under mesopic luminance levels. For black and gray stripes, only black leading edges stimulated an ETR in all three light illumination levels. We observed less OMR and ETR results using the sine wave pattern compared to using the square wave pattern. From these results, we deduced that the goldfish tend to prefer tracking the leading edge of the pattern. The goldfish can also detect the color of the moving pattern under photopic luminance conditions. We decided that ETR is an intriguing factor in OMR, and is suitable as a method of behavioral measurement in visual system research.

Performance Improvement of Human Detection in Thermal Images using Principal Component Analysis and Blob Clustering (주성분 분석과 Blob 군집화를 이용한 열화상 사람 검출 시스템의 성능 향상)

  • Jo, Ahra;Park, Jeong-Sik;Seo, Yong-Ho;Jang, Gil-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.157-163
    • /
    • 2013
  • In this paper, we propose a human detection technique using thermal imaging camera. The proposed method is useful at night or rainy weather where a visible light imaging cameras is not able to detect human activities. Under the observation that a human is usually brighter than the background in the thermal images, we estimate the preliminary human regions using the statistical confidence measures in the gray-level, brightness histogram. Afterwards, we applied Gaussian filtering and blob labeling techniques to remove the unwanted noise, and gather the scattered of the pixel distributions and the center of gravities of the blobs. In the final step, we exploit the aspect ratio and the area on the unified object region as well as a number of the principal components extracted from the object region images to determine if the detected object is a human. The experimental results show that the proposed method is effective in environments where visible light cameras are not applicable.

DEEP-South : Moving Object Detection Experiments

  • Oh, Young-Seok;Bae, Yeong-Ho;Kim, Myung-Jin;Roh, Dong-Goo;Jin, Ho;Moon, Hong-Kyu;Park, Jintae;Lee, Hee-Jae;Yim, Hong-Suh;Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.75.4-76
    • /
    • 2016
  • DEEP-South (Deep Ecliptic patrol of the Southern sky) is one of the secondary science projects of KMTNet (Korea Microlensing Telescope Network). The objective of this project is twofold, the physical characterization and the discovery of small Solar System bodies, focused on NEOs (Near Earth objects). In order to achieve the goals, we are implementing a software package to detect and report moving objects in the $18k{\times}18k$ mosaic CCD images of KMTNet. In this paper, we present preliminary results of the moving object detection experiments using the prototype MODP (Moving Object Detection Program). We utilize multiple images that are being taken at three KMTNet sites, towards the same target fields (TFs) obtained at different epochs. This prototype package employs existing softwares such as SExtractor (Source-Extracto) and SCAMP (Software for Calibrating Astrometry and Photometry); SExtractor generates catalogs, while SCAMP conducts precision astrometric calibration, then MODP determines if a point source is moving. We evaluated the astrometric accuracy and efficiency of the current version of MODP. The plan for upgrading MODP will also be mentioned.

  • PDF

Updating Obstacle Information Using Object Detection in Street-View Images (스트리트뷰 영상의 객체탐지를 활용한 보행 장애물 정보 갱신)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.599-607
    • /
    • 2021
  • Street-view images, which are omnidirectional scenes centered on a specific location on the road, can provide various obstacle information for the pedestrians. Pedestrian network data for the navigation services should reflect the up-to-date obstacle information to ensure the mobility of pedestrians, including people with disabilities. In this study, the object detection model was trained for the bollard as a major obstacle in Seoul using street-view images and a deep learning algorithm. Also, a process for updating information about the presence and number of bollards as obstacle properties for the crosswalk node through spatial matching between the detected bollards and the pedestrian nodes was proposed. The missing crosswalk information can also be updated concurrently by the proposed process. The proposed approach is appropriate for crowdsourcing data as the model trained using the street-view images can be applied to photos taken with a smartphone while walking. Through additional training with various obstacles captured in the street-view images, it is expected to enable efficient information update about obstacles on the road.

The Resident Space Object Detection Method Based on the Connection between the Fourier Domain Image of the Video Data Difference Frame and the Orbital Velocity Projection

  • Vasilina Baranova;Alexander Spiridonov;Dmitrii Ushakov;Vladimir Saetchnikov
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • A method for resident space object detection in video stream processing using a set of matched filters has been proposed. Matched filters are constructed based on the connection between the Fourier spectrum shape of the difference frame and the magnitude of the linear velocity projection onto the observation plane. Experimental data were obtained using the mobile optical surveillance system for low-orbit space objects. The detection problem in testing mode was solved for raw video data with intensity signals from three satellites: KORONAS-FOTON, CUSAT 2/FALCON 9, and GENESIS-1. Difference frames of video data with the AQUA satellite pass were used to construct matched filters. The satellites were automatically detected at points where the difference in the value of their linear velocity projection and the reference satellite was close in value. An initial approximation of the satellites slant range vector and position vector has been obtained based on the values of linear velocity projection onto the frame plane. It has been established that the difference in the inclination angle between the detected satellite intensity signal Fourier image and the reference satellite mask corresponds to the difference in the inclinations of these objects. The proposed method allows for detecting and estimating the initial approximation of the slant range and position vector of artificial and natural space objects, such as satellites, debris, and asteroids.

Moving Object Trajectory based on Kohenen Network for Efficient Navigation of Mobile Robot

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • In this paper, we propose a novel approach to estimating the real-time moving trajectory of an object is proposed in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the input-output relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.