• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.03 seconds

Object Detection Method on Vision Robot using Sensor Fusion (센서 융합을 이용한 이동 로봇의 물체 검출 방법)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.249-254
    • /
    • 2007
  • A mobile robot with various types of sensors and wireless camera is introduced. We show this mobile robot can detect objects well by combining the results of active sensors and image processing algorithm. First, to detect objects, active sensors such as infrared rays sensors and supersonic waves sensors are employed together and calculates the distance in real time between the object and the robot using sensor's output. The difference between the measured value and calculated value is less than 5%. We focus on how to detect a object region well using image processing algorithm because it gives robots the ability of working for human. This paper suggests effective visual detecting system for moving objects with specified color and motion information. The proposed method includes the object extraction and definition process which uses color transformation and AWUPC computation to decide the existence of moving object. Shape information and signature algorithm are used to segment the objects from background regardless of shape changes. We add weighing values to each results from sensors and the camera. Final results are combined to only one value which represents the probability of an object in the limited distance. Sensor fusion technique improves the detection rate at least 7% higher than the technique using individual sensor.

Algorithm of Generating Adaptive Background Modeling for crackdown on Illegal Parking (불법 주정차 무인 자동 단속을 위한 환경 변화에 강건한 적응적 배경영상 모델링 알고리즘)

  • Joo, Sung-Il;Jun, Young-Min;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • The Object tracking by real-time image analysis is one of the major concerns in computer vision and its application fields. The Object detection process of real-time images must be preceded before the object tracking process. To achieve the stable object detection performance in the exterior environment, adaptive background model generation methods are needed. The adaptive background model can accept the nature's phenomena changes and adapt the system to the changes such as light or shadow movements that are caused by changes of meridian altitudes of the sun. In this paper, we propose a robust background model generation method effective in an illegal parking auto-detection application area. We also provide a evaluation method that judges whether a moving vehicle stops or not. As the first step, an initial background model is generated. Then the differences between the initial model and the input image frame is used to trace the movement of object. The moving vehicle can be easily recognized from the object tracking process. After that, the model is updated by the background information except the moving object. These steps are repeated. The experiment results show that our background model is effective and adaptable in the variable exterior environment. The results also show our model can detect objects moving slowly. This paper includes the performance evaluation results of the proposed method on the real roads.

  • PDF

A Study on the Development of Industrial Robot Workplace Safety System (산업용 로봇 작업장 안전시스템 개발에 대한 연구)

  • Jin-Bae Kim;Sun-Hyun Kwon;Man-Soo Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • As the importance of artificial intelligence grows rapidly and emerges as a leader in technology, it is becoming an important variable in the next-generation industrial system along with the robot industry. In this study, a safety system was developed using deep learning technology to provide worker safety in a robot workplace environment. The implemented safety system has multiple cameras installed with various viewing directions to avoid blind spots caused by interference. Workers in various scenario situations were detected, and appropriate robot response scenarios were implemented according to the worker's risk level through IO communication. For human detection, the YOLO algorithm, which is widely used in object detection, was used, and a separate robot class was added and learned to compensate for the problem of misrecognizing the robot as a human. The performance of the implemented system was evaluated by operator detection performance by applying various operator scenarios, and it was confirmed that the safety system operated stably.

Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery (UAV와 다시기 위성영상을 이용한 붕괴건물 탐지)

  • Jung, Sejung;Lee, Kirim;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.187-196
    • /
    • 2020
  • In this study, collapsed building detection using UAV (Unmanned Aerial Vehicle) and PlanetScope satellite images was carried out, suggesting the possibility of utilization of heterogeneous sensors in object detection located on the surface. To this end, the area where about 20 buildings collapsed due to forest fire damage was selected as study site. First of all, the feature information of objects such as ExG (Excess Green), GLCM (Gray-Level Co-Occurrence Matrix), and DSM (Digital Surface Model) were generated using high-resolution UAV images performed object-based segmentation to detect collapsed buildings. The features were then used to detect candidates for collapsed buildings. In this process, a result of the change detection using PlanetScope were used together to improve detection accuracy. More specifically, the changed pixels acquired by the bitemporal PlanetScope images were used as seed pixels to correct the misdetected and overdetected areas in the candidate group of collapsed buildings. The accuracy of the detection results of collapse buildings using only UAV image and the accuracy of collapse building detection result when UAV and PlanetScope images were used together were analyzed through the manually dizitized reference image. As a result, the results using only UAV image had 0.4867 F1-score, and the results using UAV and PlanetScope images together showed that the value improved to 0.8064 F1-score. Moreover, the Kappa coefficiant value was also dramatically improved from 0.3674 to 0.8225.

An Analysis of Intrusion Pattern Based on Backpropagation Algorithm (역전파 알고리즘 기반의 침입 패턴 분석)

  • Woo Chong-Woo;Kim Sang-Young
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.93-103
    • /
    • 2004
  • The main function of the intrusion Detection System (IDS) usee to be more or less passive detection of the intrusion evidences, but recently it is developed with more diverse types and methodologies. Especially, it is required that the IDS should process large system audit data fast enough. Therefore the data mining or neural net algorithm is being focused on, since they could satisfy those situations. In this study, we first surveyed and analyzed the several recent intrusion trends and types. And then we designed and implemented an IDS using back-propagation algorithm of the neural net, which could provide more effective solution. The distinctive feature of our study could be stated as follows. First, we designed the system that allows both the Anomaly dection and the Misuse detection. Second, we carried out the intrusion analysis experiment by using the reliable KDD Cup ‘99 data, which would provide us similar results compared to the real data. Finally, we designed the system based on the object-oriented concept, which could adapt to the other algorithms easily.

  • PDF

A Study on Building a Scalable Change Detection System Based on QGIS with High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 QGIS 기반 확장 가능한 변화탐지 시스템 구축 방안 연구)

  • Byoung Gil Kim;Chang Jin Ahn;Gayeon Ha
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1763-1770
    • /
    • 2023
  • The availability of high-resolution satellite image time series data has led to an increase in change detection research. Various methods are being studied, such as satellite image pixel and object-level change detection algorithms, as well as algorithms that apply deep learning technology. In this paper, we propose a QGIS plugin-based system to enhance the utilization of these useful results and present an actual implementation case. The proposed system is a system for intensive change detection and monitoring of areas of interest, and we propose a convenient system expansion method for algorithms to be developed in the future. Furthermore, it is expected to contribute to the construction of satellite image utilization systems by presenting the basic structure of commercialization of change detection research.

Development of Automatic Precision Inspection System for Defect Detection of Photovoltaic Wafer (태양광 웨이퍼의 결함검출을 위한 자동 정밀검사 시스템 개발)

  • Baik, Seung-Yeb
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.666-672
    • /
    • 2011
  • In this paper, we describes the development of automatic inspection system for detecting the defects on photovoltaic wafer by using machine vision. Until now, The defect inspection process was manually performed by operators. So these processes caused the produce of poorly-made articles and inaccuracy results. To improve the inspection accuracy, the inspection system is not only configured, but the image processing algorithm is also developed. The inspection system includes dimensional verification and pattern matching which compares a 2-D image of an object to a pattern image the method proves to be computationally efficient and accurate for real time application and we confirmed the applicability of the proposed method though the experience in a complex environment.

Emergency Detection Method using Motion History Image for a Video-based Intelligent Security System

  • Lee, Jun;Lee, Se-Jong;Park, Jeong-Sik;Seo, Yong-Ho
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.39-42
    • /
    • 2012
  • This paper proposed a method that detects emergency situations in a video stream using MHI (Motion History Image) and template matching for a video-based intelligent security system. The proposed method creates a MHI of each human object through image processing technique such as background removing based on GMM (Gaussian Mixture Model), labeling and accumulating the foreground images, then the obtained MHI is compared with the existing MHI templates for detecting an emergency situation. To evaluate the proposed emergency detection method, a set of experiments on the dataset of video clips captured from a security camera has been conducted. And we successfully detected emergency situations using the proposed method. In addition, the implemented system also provides MMS (Multimedia Message Service) so that a security manager can deal with the emergency situation appropriately.

Identifying Process Capability Index for Electricity Distribution System through Thermal Image Analysis (열화상 이미지 분석을 통한 배전 설비 공정능력지수 감지 시스템 개발)

  • Lee, Hyung-Geun;Hong, Yong-Min;Kang, Sung-Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.327-340
    • /
    • 2021
  • Purpose: The purpose of this study is to propose a system predicting whether an electricity distribution system is abnormal by analyzing the temperature of the deteriorated system. Traditional electricity distribution system abnormality diagnosis was mainly limited to post-inspection. This research presents a remote monitoring system for detecting thermal images of the deteriorated electricity distribution system efficiently hereby providing safe and efficient abnormal diagnosis to electricians. Methods: In this study, an object detection algorithm (YOLOv5) is performed using 16,866 thermal images of electricity distribution systems provided by KEPCO(Korea Electric Power Corporation). Abnormality/Normality of the extracted system images from the algorithm are classified via the limit temperature. Each classification model, Random Forest, Support Vector Machine, XGBOOST is performed to explore 463,053 temperature datasets. The process capability index is employed to indicate the quality of the electricity distribution system. Results: This research performs case study with transformers representing the electricity distribution systems. The case study shows the following states: accuracy 100%, precision 100%, recall 100%, F1-score 100%. Also the case study shows the process capability index of the transformers with the following states: steady state 99.47%, caution state 0.16%, and risk state 0.37%. Conclusion: The sum of caution and risk state is 0.53%, which is higher than the actual failure rate. Also most transformer abnormalities can be detected through this monitoring system.

Traveling Direction Estimation of Autonomous Vehicle using Vision System (비젼 시스템을 이용한 자율 주행 차량의 실시간 주행 방향 추정)

  • 강준필;정길도
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.127-130
    • /
    • 2001
  • In this paper, we describes a method of estimating traveling direction of a autonomous vehicle. For the development of autonomous vehicle, it is important to detect road lane and to reckon traveling direction. The object of a propose algorithm is to perform lane detection in real-time for standalone vision system. And we calculate efficent traveling direction to find steering angie for lateral control system. Therefore autonomous vehicle go forward the center of lane by adjusting the current steering angle using traveling direction.

  • PDF