• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.025 seconds

Motion Detection using Adaptive Background Image and A Net Model Pixel Space of Boundary Detection (적응적 배경영상과 그물형 픽셀 간격의 윤곽점 검출을 이용한 객체의 움직임 검출)

  • Lee Chang soo;Jun Moon seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.92-101
    • /
    • 2005
  • It is difficult to detect the accurate detection which leads the camera it moves follows in change of the noise or illumination and Also, it could be recognized with backgound if the object doesn't move during hours. In this paper, the proposed method is updating changed background image as much as N*M pixel mask as time goes on after get a difference between imput image and first background image. And checking image pixel can efficiently detect moving by computing fixed distance pixel instead of operate all pixel. Also, set up minimum area of object to use boundary point of object abstracted through checking image pixel and motion detect of object. Therefore motion detection is available as is fast and correct without doing checking image pixel every Dame. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 90 percents.

An Improved Normalization Method for Haar-like Features for Real-time Object Detection (실시간 객체 검출을 위한 개선된 Haar-like Feature 정규화 방법)

  • Park, Ki-Yeong;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8C
    • /
    • pp.505-515
    • /
    • 2011
  • This paper describes a normalization method of Haar-like features used for object detection. Previous method which performs variance normalization on Haar-like features requires a lot of calculations, since it uses an additional integral image for calculating the standard deviation of intensities of pixels in a candidate window and increases possibility of false detection in the area where variance of brightness is small. The proposed normalization method can be performed much faster than the previous method by not using additional integral image and classifiers which are trained with the proposed normalization method show robust performance in various lighting conditions. Experimental result shows that the object detector which uses the proposed method is 26% faster than the one which uses the previous method. Detection rate is also improved by 5% without increasing false alarm rate and 45% for the samples whose brightness varies significantly.

Foreground object detection in projection display (프로젝션 화면에서 전경물체 검출)

  • Kang Hyun;Lee Chang Woo;Park Min Ho;Jung Keechul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.27-37
    • /
    • 2004
  • The detection of foreground objects in a projection display using color information can be hard due to changing lighting conditions and complex backgrounds. Accordingly, the current paper proposes a foreground object detection method using color information that is obtained from the input image to the Projector and an image captured by a camera above the projection display. After pixel correspondences between the two images are found by calibrating the geometry distortion and color distortion, the natural color variations are estimated for the projection display. Then, any pixel that has another variation not resulting from natural geometry or color distortion is considered a part of foreground objects, because a foreground object in a projection display changes the values of pixels. As shown by experimental results, the proposed foreground detection method is applicable to an interactive projection display system such as the DigitalDesk

Integrated Object Detection and Blockchain Framework for Remote Safety Inspection at Construction Sites

  • Kim, Dohyeong;Yang, Jaehun;Anjum, Sharjeel;Lee, Dongmin;Pyeon, Jae-ho;Park, Chansik;Lee, Doyeop
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.136-144
    • /
    • 2022
  • Construction sites are characterized by dangerous situations and environments that cause fatal accidents. Potential risk detection needs to be improved by continuously monitoring site conditions. However, the current labor-intensive inspection practice has many limitations in monitoring dangerous conditions at construction sites. Computer vision technology that can quickly analyze and collect site conditions from images has been in the spotlight as a solution. Nonetheless, inspection results obtained via computer vision are still stored and managed in centralized systems vulnerable to tampering with information by the central node. Blockchain has been used as a reliable and efficient decentralized information management system. Despite its potential, only limited research has been conducted integrating computer vision and blockchain. Therefore, to solve the current safety management problems, the authors propose a framework for construction site inspection that integrates object detection and blockchain network, enabling efficient and reliable remote inspection. Object detection is applied to enable the automatic analysis of site safety conditions. As a result, the workload of safety managers can be reduced with inspection results stored and distributed reliably through the blockchain network. In addition, errors or forgery in the inspection process can be automatically prevented and verified through a smart contract. As site safety conditions are reliably shared with project participants, project participants can remotely inspect site conditions and make safety-related decisions in trust.

  • PDF

Development of Checking System for Emergency using Behavior-based Object Detection (행동기반 사물 감지를 통한 위급상황 확인 시스템 개발)

  • Kim, MinJe;Koh, KyuHan;Jo, JaeChoon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.140-146
    • /
    • 2020
  • Since the current crime prevention systems have a standard mechanism that victims request for help by themselves or ask for help from a third party nearby, it is difficult to obtain appropriate help in situations where a prompt response is not possible. In this study, we proposed and developed an automatic rescue request model and system using Deep Learning and OpenCV. This study is based on the prerequisite that immediate and precise threat detection is essential to ensure the user's safety. We validated and verified that the system identified by more than 99% of the object's accuracy to ensure the user's safety, and it took only three seconds to complete all necessary algorithms. We plan to collect various types of threats and a large amount of data to reinforce the system's capabilities so that the system can recognize and deal with all dangerous situations, including various threats and unpredictable cases.

A Study on a Structure of Obstacle Detection System of AGV for Port Automation (항만 자동화를 위한 AGV 시스템의 장애물 감지 시스템의 구성에 관한 연구)

  • 박찬훈;최성락;박경택;김선호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.227-234
    • /
    • 2000
  • AGV is very proper equipment for Port Automation. AGV must have Obstacle Detection System(ODS) for port automation. Obstacle Detection System must have some functions. It must be able to classify some specified object from background data. And it must be able to track classified objects. Finally, ODS must determine its next action for safe cruise whether it must do emergency stop or it must speed down or it must change its track. For these functions, ODS can have many different structures. In this paper, we will propose one structure among some possible ones. Our ODS has been being developed using proposed structure since last year. In this paper, we will introduce our system which is under construction.

  • PDF

Moving Object Detection and Counting System Using Multi-Resolution Edge Information (다중해상도 에지정보를 이용한 이동 물체 탐지 및 계수 시스템)

  • Jeong, Jongmyeon;Song, Sion;Kim, Hoyoung;Jo, HongLae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.137-138
    • /
    • 2015
  • 본 논문에서는 연속된 영상에서 다중해상도 에지정보의 차이를 이용하여 이동하는 물체를 탐지하고 계수하는 시스템을 제안한다. 연속적으로 입력되는 영상에 대하여 이산 웨이블릿 연산을 수행하여 다중해상도 에지를 추출하고, 인접한 프레임 사이의 다중해상도 에지 차이를 이용하여 이동물체를 추출한다. 가중치가 부여된 유클리디언 거리를 이용하여 물체를 추적한 다음, 칼만필터를 이용하여 물체 궤적의 위치 정보를 보정한다. 마지막으로, 관심영역에 대한 물체 궤적의 상대적인 위치를 고려하여 이동물체를 계수한다.

  • PDF

Detection of PCB Components Using Deep Neural Nets (심층신경망을 이용한 PCB 부품의 검지 및 인식)

  • Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.11-15
    • /
    • 2020
  • In a typical initial setup of a PCB component inspection system, operators should manually input various information such as category, position, and inspection area for each component to be inspected, thus causing much inconvenience and longer setup time. Although there are many deep learning based object detectors, RetinaNet is regarded as one of best object detectors currently available. In this paper, a method using an extended RetinaNet is proposed that automatically detects its component category and position for each component mounted on PCBs from a high-resolution color input image. We extended the basic RetinaNet feature pyramid network by adding a feature pyramid layer having higher spatial resolution to the basic feature pyramid. It was demonstrated by experiments that the extended RetinaNet can detect successfully very small components that could be missed by the basic RetinaNet. Using the proposed method could enable automatic generation of inspection areas, thus considerably reducing the setup time of PCB component inspection systems.

Intelligent Hexapod Mobile Robot using Image Processing and Sensor Fusion (영상처리와 센서융합을 활용한 지능형 6족 이동 로봇)

  • Lee, Sang-Mu;Kim, Sang-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.365-371
    • /
    • 2009
  • A intelligent mobile hexapod robot with various types of sensors and wireless camera is introduced. We show this mobile robot can detect objects well by combining the results of active sensors and image processing algorithm. First, to detect objects, active sensors such as infrared rays sensors and supersonic waves sensors are employed together and calculates the distance in real time between the object and the robot using sensor's output. The difference between the measured value and calculated value is less than 5%. This paper suggests effective visual detecting system for moving objects with specified color and motion information. The proposed method includes the object extraction and definition process which uses color transformation and AWUPC computation to decide the existence of moving object. We add weighing values to each results from sensors and the camera. Final results are combined to only one value which represents the probability of an object in the limited distance. Sensor fusion technique improves the detection rate at least 7% higher than the technique using individual sensor.

A Novel Receiver Sensing Scheme for Capacitive Power Transfer System (전계결합 무선전력전송의 수신부 감지 방법)

  • Jeong, Chae-Ho;Im, Hwi-Yeol;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.62-65
    • /
    • 2019
  • Wireless power transfer systems require an algorithm to determine the presence of the target object for mitigating standby power and safety issues. Although many schemes that sense various external objects have been actively proposed for inductive power transfer systems, not many studies on capacitive power transfer systems have been conducted compared with those on inductive power transfer systems. This study proposes a target object detection algorithm by monitoring the capacitance in transmitter-side electrodes without additional pressure sensors or distance sensors. The proposed algorithm determines the presence of a target object by monitoring the change in capacitance in transmitter-side electrodes using the step pulse of the microcontroller unit. The algorithm is verified by two step processes. First, the performance in capacitance measurement is compared with that of an LCR meter. Then, the verification is conducted in a 5-W capacitive power transfer hardware. Experimental result shows that the interelectrode capacitance increases by 6 times when the target object is fully aligned. Thus, the proposed scheme can successfully detect the presence of the target object.