• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.028 seconds

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

An Analysis on Short-Range-Radar Characteristic for Developing Object Detecting System (물체탐지 시스템의 개발을 위한 근거리 레이더에 대한 특성 분석)

  • Park, Dong-Jin;Ryu, In-Hwan;Byun, Ki-Hoon;Lee, Sang-Min;Kwon, Jang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1267-1279
    • /
    • 2014
  • In this paper, we suggest the development of object detection systems for the safety of the ship through the study of the properties of short-range radar. Many of the short-range radars developed for special purpose like cars has cheaper price advantages but it is not proper to every application. In order to overcome such obstacles we need to analysis data from experiments in various environments and feature analysis of the device is essential. Also, the data clustering algorithms to display correct classified moving objects is necessary. In this paper we propose the advanced fast moving object detection system using short range radars with better detection accuracy. And we proposed a clustering algorithm using the value of the RCS and the speed and trajectory information of the radar data that are reflected.

Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks (서베일런스 네트워크에서 패턴인식 기반의 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • This paper proposes algorithm to reduce the computing time in a neural network that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. Object Detection can be defined as follows : Given image sequence, which can forom a digitalized image, the goal of object detection is to determine whether or not there is any object in the image, and if present, returns its location, direction, size, and so on. But object in an given image is considerably difficult because location, size, light conditions, obstacle and so on change the overall appearance of objects, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact object detection which overcomes some restrictions by using neural network. Proposed system can be object detection irrelevant to obstacle, background and pose rapidly. And neural network calculation time is decreased by reducing input vector size of neural network. Principle Component Analysis can reduce the dimension of data. In the video input in real time from a CCTV was experimented and in case of color segment, the result shows different success rate depending on camera settings. Experimental results show proposed method attains 30% higher recognition performance than the conventional method.

Object Detection Based on Hellinger Distance IoU and Objectron Application (Hellinger 거리 IoU와 Objectron 적용을 기반으로 하는 객체 감지)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2022
  • Although 2D Object detection has been largely improved in the past years with the advance of deep learning methods and the use of large labeled image datasets, 3D object detection from 2D imagery is a challenging problem in a variety of applications such as robotics, due to the lack of data and diversity of appearances and shapes of objects within a category. Google has just announced the launch of Objectron that has a novel data pipeline using mobile augmented reality session data. However, it also is corresponding to 2D-driven 3D object detection technique. This study explores more mature 2D object detection method, and applies its 2D projection to Objectron 3D lifting system. Most object detection methods use bounding boxes to encode and represent the object shape and location. In this work, we explore a stochastic representation of object regions using Gaussian distributions. We also present a similarity measure for the Gaussian distributions based on the Hellinger Distance, which can be viewed as a stochastic Intersection-over-Union. Our experimental results show that the proposed Gaussian representations are closer to annotated segmentation masks in available datasets. Thus, less accuracy problem that is one of several limitations of Objectron can be relaxed.

Hidden Object Detection System using Parametric Array (파라메트릭 배열을 이용한 은폐 물체 탐지 시스템)

  • Lee, Kibae;Lee, Jaeil;Bae, Jinho;Lee, Chong Hyun;Cho, Jung Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.78-86
    • /
    • 2017
  • In this paper, we propose hidden object detection system using parametric array based on acoustic signal that is harmless to human body. A transmit signal of the proposed detection system uses a high directive chirp signal generated from parametric array phenomenon, which uses technique to improve a signal to noise (SNR) of a received signal and a distance resolution trough the dechirp processing. The transmit sensor array is constructed as $8{\times}2$ and has a horizontal beam width of $7^{\circ}$ and vertical beam width of $26^{\circ}$. To verify the detection and visualization of the proposed system, a 2-axis driving control system based on linear stage was constructed, and A-scan, B-scan, and C-scan experiments was addressed for hidden object. From experimental results, we detected and visualized the hidden bronze plate and pipe by cloth and the visualized shapes was confirmed. Especially, the obtained errors was $0.015m^2$ for bronze plate, and $0.046m^2$ for pipe.

Realtime Object Extraction and Tracking System for Moving Object Monitoring (이동 객체 감시를 위한 실시간 객체추출 및 추적시스템)

  • Kang Hyun-Joong;Lee Hwang-hyoung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.59-68
    • /
    • 2005
  • Object tracking in a real time image is one of interesting subjects in computer vision and many practical application fields Past couple of years. But sometimes existing systems cannot find object by recognize background noise as object. This paper proposes a method of object detection and tracking using adaptive background image in real time. To detect object which does not influenced by illumination and remove noise in background image, this system generates adaptive background image by real time background image updating. This system detects object using the difference between background image and input image from camera. After setting up MBR(minimum bounding rectangle) using the internal point of detected otject, the system tracks otiect through this MBR. In addition, this paper evaluates the test result about performance of proposed method as compared with existing tracking algorithm.

  • PDF

A Development of Video Tracking System on Real Time Using MBR (MBR을 이용한 실시간 영상추적 시스템 개발)

  • Kim, Hee-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1243-1248
    • /
    • 2006
  • Object tracking in a real time image is one of interesting subjects in computer vision and many practical application fields past couple of years. But sometimes existing systems cannot find object by recognize background noise as object. This paper proposes a method of object detection and tracking using adaptive background image in real time. To detect object which does not influenced by illumination and remove noise in background image, this system generates adaptive background image by real time background image updating. This system detects object using the difference between background image and input image from camera. After setting up MBR(minimum bounding rectangle) using the internal point of detected object, the system tracks object through this MBR. In addition, this paper evaluates the test result about performance of proposed method as compared with existing tracking algorithm.

  • PDF

Livestock Anti-theft System Using Morphological Feature-based Model (형태학적 특징 기반 모델을 이용한 가축 도난 판단 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • In this paper, we propose a classification and theft detection system for human and livestock for various moving objects in a barn. To do this, first, we extract the moving objects using the GMM method. Second, the noise generated when extracting the moving object is removed, and the moving object is recognized through the labeling method. And we propose a method to classify human and livestock using model formation and color for the unique form of the detected moving object. In addition, we propose a method of tracking and overlapping the classified moving objects using Kalman filter. Through this overlap determination method, an event notifying a dangerous situation is generated and a theft determination system is constructed. Finally, we demonstrate the feasibility and applicability of the proposed system through several experiments.

Utilization of Laser Range Measurements for Guiding Unmanned Agricultural Machinery

  • Jung, I. G.;Park, W. P.;Kim, S. C.;Sung, J. H.;Chung, S. O.
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.69-74
    • /
    • 2001
  • Detection of operation lines in farm works, object recognition and obstacle avoidance are essential pre-requisite technologies for unmanned agricultural machinery. A CCD camera, which has been largely used for these functions, is expensive and has difficulty in real-time signal processing. In this study, a laser range sensor was selected as the guiding vision for unmanned agricultural machinery such as a tractor. To achieve this capability, algorithms for distance measurement, signal filtering, object recognition, and obstacle avoidance were developed. Computer simulations were carried out to evaluate performance of the algorithms. Experiments were also conducted with various materials and shapes, Laser beam lost its intensity for poor reflective materials, resulting in less range value than actual, so a compensation technique was considered to be necessary. Object detection system was fabricated on an agricultural tractor and the performance was evaluated. As test result for obstacle detection and avoidance in field, to detect and avoid obstacle for path finding with guiding system for unmanned agricultural machinery was enable.

  • PDF

Radar-based Security System: Implementation for Cluttered Environment

  • Lee, Tae-Yun;Skvortsov, Vladimir;Ka, Min-Ho
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.160-167
    • /
    • 2015
  • We present an experimental implementation of the inexpensive microwave security sensor that can detect both static and slowly moving objects in cluttered environment. The prototype consists of a frequency-modulated continuous wave radar sensor, control board or computer and software. The prototype was tested in a cluttered indoor environment. In case of intrusion or change of environment the sensor will give an alarm, determine the location of new object, change in its location and can detect a slowly moving target. To make a low-cost unit we use commercially available automotive radar and own signal processing techniques for object detection and tracking. The intruder detection is based on a comparison between current 'image' in memory and 'no-intrusion' reference image. The main challenge is to develop a reliable technique for detection of a relatively low-magnitude object signals hidden in multipath clutter echo signals. Various experimental measurements and computations have shown the feasibility and performance of the system.