• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.028 seconds

A Research of CNN-based Object Detection for Multiple Object Tracking in Image (영상에서 다중 객체 추적을 위한 CNN 기반의 다중 객체 검출에 관한 연구)

  • Ahn, Hyochang;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.110-114
    • /
    • 2019
  • Recently, video monitoring system technology has been rapidly developed to monitor and respond quickly to various situations. In particular, computer vision and related research are being actively carried out to track objects in the video. This paper proposes an efficient multiple objects detection method based on convolutional neural network (CNN) for multiple objects tracking. The results of the experiment show that multiple objects can be detected and tracked in the video in the proposed method, and that our method is also good performance in complex environments.

Literature Review and Current Trends of Automated Design for Fire Protection Facilities (화재방호 설비 설계 자동화를 위한 선행연구 및 기술 분석)

  • Hong, Sung-Hyup;Choi, Doo Chan;Lee, Kwang Ho
    • Land and Housing Review
    • /
    • v.11 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • This paper presents the recent research developments identified through a review of literature on the application of artificial intelligence in developing automated designs of fire protection facilities. The literature review covered research related to image recognition and applicable neural networks. Firstly, it was found that convolutional neural network (CNN) may be applied to the development of automating the design of fire protection facilities. It requires a high level of object detection accuracy necessitating the classification of each object making up the image. Secondly, to ensure accurate object detection and building information, the data need to be pulled from architectural drawings. Thirdly, by applying image recognition and classification, this can be done by extracting wall and surface information using dimension lines and pixels. All combined, the current review of literature strongly indicates that it is possible to develop automated designs for fire protection utilizing artificial intelligence.

A Scene-Specific Object Detection System Utilizing the Advantages of Fixed-Location Cameras

  • Jin Ho Lee;In Su Kim;Hector Acosta;Hyeong Bok Kim;Seung Won Lee;Soon Ki Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.329-336
    • /
    • 2023
  • This paper introduces an edge AI-based scene-specific object detection system for long-term traffic management, focusing on analyzing congestion and movement via cameras. It aims to balance fast processing and accuracy in traffic flow data analysis using edge computing. We adapt the YOLOv5 model, with four heads, to a scene-specific model that utilizes the fixed camera's scene-specific properties. This model selectively detects objects based on scale by blocking nodes, ensuring only objects of certain sizes are identified. A decision module then selects the most suitable object detector for each scene, enhancing inference speed without significant accuracy loss, as demonstrated in our experiments.

Marine-Life-Detection and Density-Estimation Algorithms Based on Underwater Images and Scientific Sonar Systems (수중영상과 과학어탐 시스템 기반 해양생물 탐지 밀도추정 알고리즘 연구)

  • Young-Tae Son;Sang-yeup Jin;Jongchan Lee;Mookun Kim;Ju Young Byon;Hyung Tae Moo;Choong Hun Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.5
    • /
    • pp.373-386
    • /
    • 2024
  • The aim of this study is to establish a system for the early detection of high-density harmful marine organisms. Considering its accuracy and processing speed, YOLOv8m (You Only Look Once version 8 medium) is selected as a suitable model for real-time underwater image-based object detection. Applying the detection algorithm allows one to detect numerous fish and the occasional occurrence of jellyfish. The average precision, recall rate, and mAP (mean Average Precision) of the trained model are 0.931, 0.881, and 0.948 for the validation data, respectively. Also, the mAP for each class is 0.97 for fish, 0.97 for jellyfish and 0.91 for salpa, all of which exceed 0.9 (90%) for classes demonstrating the excellent performance of the model. A scientific sonar system is used to address the object-detection range and validate the detection results. Additionally, integrating and grid averaging the echo strength allows the detection results to be smoothed in space and time. Mean-volume back-scattering strength values are obtained to reflect the detection variability within the analysis domain. Furthermore, an underwater image-based object (marine lives) detection algorithm, an image-correction technique based on the underwater environmental conditions (including nights), and quantified detection results based on a scientific sonar system are presented, which demonstrate the utility of the detection system in various applications.

A Study on Utilizing Smartphone for CMT Object Tracking Method Adapting Face Detection (얼굴 탐지를 적용한 CMT 객체 추적 기법의 스마트폰 활용 연구)

  • Lee, Sang Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.588-594
    • /
    • 2021
  • Due to the recent proliferation of video contents, previous contents expressed as the character or the picture are being replaced to video and growth of video contents is being boosted because of emerging new platforms. As this accelerated growth has a great impact on the process of universalization of technology for ordinary people, video production and editing technologies that were classified as expert's areas can be easily accessed and used from ordinary people. Due to the development of these technologies, tasks like that recording and adjusting that depends on human's manual involvement could be automated through object tracking technology. Also, the process for situating the object in the center of the screen after finding the object to record could have been automated. Because the task of setting the object to be tracked is still remaining as human's responsibility, the delay or mistake can be made in the process of setting the object which has to be tracked through a human. Therefore, we propose a novel object tracking technique of CMT combining the face detection technique utilizing Haar cascade classifier. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the smartphone in real time.

An Object Detection System using Eigen-background and Clustering (Eigen-background와 Clustering을 이용한 객체 검출 시스템)

  • Jeon, Jae-Deok;Lee, Mi-Jeong;Kim, Jong-Ho;Kim, Sang-Kyoon;Kang, Byoung-Doo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The object detection is essential for identifying objects, location information, and user context-aware in the image. In this paper, we propose a robust object detection system. The System linearly transforms learning data obtained from the background images to Principal components. It organizes the Eigen-background with the selected Principal components which are able to discriminate between foreground and background. The Fuzzy-C-means (FCM) carries out clustering for images with inputs from the Eigen-background information and classifies them into objects and backgrounds. It used various patterns of backgrounds as learning data in order to implement a system applicable even to the changing environments, Our system was able to effectively detect partial movements of a human body, as well as to discriminate between objects and backgrounds removing noises and shadows without anyone frame image for fixed background.

A Study on the Elevator System Using Real-time Object Detection Technology YOLOv5 (실시간 객체 검출 기술 YOLOv5를 이용한 스마트 엘리베이터 시스템에 관한 연구)

  • Sun-Been Park;Yu-Jeong Jeong;Da-Eun Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.103-108
    • /
    • 2024
  • In this paper, a smart elevator system was studied using real-time object detection technology based on YOLO(You only look once)v5. When an external elevator button is pressed, the YOLOv5 model analyzes the camera video to determine whether there are people waiting, and if it determines that there are no people waiting, the button is automatically canceled. The study introduces an effective method of implementing object detection and communication technology through YOLOv5 and MQTT (Message Queuing Telemetry Transport) used in the Internet of Things. And using this, we implemented a smart elevator system that determines in real time whether there are people waiting. The proposed system can play the role of CCTV (closed-circuit television) while reducing unnecessary power consumption. Therefore, the proposed smart elevator system is expected to contribute to safety and security issues.

Moving Object Detection in Pan-Tilt Camera using Image Alignment (영상 정렬 알고리듬을 이용한 팬틸트 카메라에서 움직이는 물체 탐지 기법)

  • Baek, Young-Min;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.260-261
    • /
    • 2008
  • 이동 물체 탐지(Object Detection) 기법은 대부분의 감시 시스템에서 가장 초기 단계로서, 이후에 물체 추적(Object Tracking) 및 물체 식별(Object Classification) 등의 지능 알고리듬에 입력으로 사용된다. 따라서 물체의 윤곽의 변화 없이 최대한 정교하게 이동 물체 영역 맵을 생성하는 것이 물체 탐지의 가장 중요한 요소가 된다. 카메라가 고정되어 있는 경우에는 현재 들어오는 영상에 대한 확률적 배경 모델을 생성할 수 있지만, 팬틸트 카메라와 같이 영상의 좌표가 변하는 환경에서는 배경 모델도 계속 변하기 때문에 기존의 배경 모델을 그대로 사용할 수 없다. 본 논문에서는 팬틸트 카메라와 같이 동적인 카메라에서 이동 물체 탐지를 위해, 국소 특징점(Local Feature)를 통해 카메라의 움직임을 판단하여 연속되는 영상간의 변환 행렬(Transformation Matrix)를 구하고 하고, 확률적 배경 모델링을 통한 이동 물체 탐지 기법을 제안한다. 자제 촬영한 이동 카메라 실험영상을 통해서 이 알고리듬이 동적 배경에서도 매우 강인하게 동작하는 것을 검증하였다.

  • PDF

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.297-302
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous computing environment and applications, for which Radio Frequency Identification(RFID) has been considered as a core technology. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and kcan be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in I-Dimensional space, the square in 2-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

Object Detection from Mongolian Nomadic Environmental Images

  • Perenleilkhundev, Gantuya;Batdemberel, Mungunshagai;Battulga, Batnyam;Batsuuri, Suvdaa
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.173-178
    • /
    • 2019
  • Mongolian historical and cultural monuments on settlement areas of stone inscriptions, stone images, rock-drawings, remains of cities, architecture are still telling us their stories. These monuments depict the understanding of the word, philosophical and artistic outlook, beliefs, religion, national art, language, culture and traditions of Mongols [1]. Nowadays computer science, especially computer vision is applying in the other science fields. The main problem is how to apply and which algorithm can detect and classify the objects correctly. In this paper, we propose a method to detect object from Mongolian nomadic environment images. This work proposes a method for object detection that is the combination of the binary operations in the edge detection results. We found out the best method and parameters of state-of-the-art machine learning algorithms. In experimental result, we evaluate our results with 10-fold cross validation and split 66% strategies.