Recently, video monitoring system technology has been rapidly developed to monitor and respond quickly to various situations. In particular, computer vision and related research are being actively carried out to track objects in the video. This paper proposes an efficient multiple objects detection method based on convolutional neural network (CNN) for multiple objects tracking. The results of the experiment show that multiple objects can be detected and tracked in the video in the proposed method, and that our method is also good performance in complex environments.
This paper presents the recent research developments identified through a review of literature on the application of artificial intelligence in developing automated designs of fire protection facilities. The literature review covered research related to image recognition and applicable neural networks. Firstly, it was found that convolutional neural network (CNN) may be applied to the development of automating the design of fire protection facilities. It requires a high level of object detection accuracy necessitating the classification of each object making up the image. Secondly, to ensure accurate object detection and building information, the data need to be pulled from architectural drawings. Thirdly, by applying image recognition and classification, this can be done by extracting wall and surface information using dimension lines and pixels. All combined, the current review of literature strongly indicates that it is possible to develop automated designs for fire protection utilizing artificial intelligence.
Jin Ho Lee;In Su Kim;Hector Acosta;Hyeong Bok Kim;Seung Won Lee;Soon Ki Jung
Journal of information and communication convergence engineering
/
v.21
no.4
/
pp.329-336
/
2023
This paper introduces an edge AI-based scene-specific object detection system for long-term traffic management, focusing on analyzing congestion and movement via cameras. It aims to balance fast processing and accuracy in traffic flow data analysis using edge computing. We adapt the YOLOv5 model, with four heads, to a scene-specific model that utilizes the fixed camera's scene-specific properties. This model selectively detects objects based on scale by blocking nodes, ensuring only objects of certain sizes are identified. A decision module then selects the most suitable object detector for each scene, enhancing inference speed without significant accuracy loss, as demonstrated in our experiments.
Young-Tae Son;Sang-yeup Jin;Jongchan Lee;Mookun Kim;Ju Young Byon;Hyung Tae Moo;Choong Hun Shin
Journal of the Korean Society of Marine Environment & Safety
/
v.30
no.5
/
pp.373-386
/
2024
The aim of this study is to establish a system for the early detection of high-density harmful marine organisms. Considering its accuracy and processing speed, YOLOv8m (You Only Look Once version 8 medium) is selected as a suitable model for real-time underwater image-based object detection. Applying the detection algorithm allows one to detect numerous fish and the occasional occurrence of jellyfish. The average precision, recall rate, and mAP (mean Average Precision) of the trained model are 0.931, 0.881, and 0.948 for the validation data, respectively. Also, the mAP for each class is 0.97 for fish, 0.97 for jellyfish and 0.91 for salpa, all of which exceed 0.9 (90%) for classes demonstrating the excellent performance of the model. A scientific sonar system is used to address the object-detection range and validate the detection results. Additionally, integrating and grid averaging the echo strength allows the detection results to be smoothed in space and time. Mean-volume back-scattering strength values are obtained to reflect the detection variability within the analysis domain. Furthermore, an underwater image-based object (marine lives) detection algorithm, an image-correction technique based on the underwater environmental conditions (including nights), and quantified detection results based on a scientific sonar system are presented, which demonstrate the utility of the detection system in various applications.
The Journal of the Convergence on Culture Technology
/
v.7
no.1
/
pp.588-594
/
2021
Due to the recent proliferation of video contents, previous contents expressed as the character or the picture are being replaced to video and growth of video contents is being boosted because of emerging new platforms. As this accelerated growth has a great impact on the process of universalization of technology for ordinary people, video production and editing technologies that were classified as expert's areas can be easily accessed and used from ordinary people. Due to the development of these technologies, tasks like that recording and adjusting that depends on human's manual involvement could be automated through object tracking technology. Also, the process for situating the object in the center of the screen after finding the object to record could have been automated. Because the task of setting the object to be tracked is still remaining as human's responsibility, the delay or mistake can be made in the process of setting the object which has to be tracked through a human. Therefore, we propose a novel object tracking technique of CMT combining the face detection technique utilizing Haar cascade classifier. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the smartphone in real time.
The object detection is essential for identifying objects, location information, and user context-aware in the image. In this paper, we propose a robust object detection system. The System linearly transforms learning data obtained from the background images to Principal components. It organizes the Eigen-background with the selected Principal components which are able to discriminate between foreground and background. The Fuzzy-C-means (FCM) carries out clustering for images with inputs from the Eigen-background information and classifies them into objects and backgrounds. It used various patterns of backgrounds as learning data in order to implement a system applicable even to the changing environments, Our system was able to effectively detect partial movements of a human body, as well as to discriminate between objects and backgrounds removing noises and shadows without anyone frame image for fixed background.
Sun-Been Park;Yu-Jeong Jeong;Da-Eun Lee;Tae-Kook Kim
Journal of Internet of Things and Convergence
/
v.10
no.2
/
pp.103-108
/
2024
In this paper, a smart elevator system was studied using real-time object detection technology based on YOLO(You only look once)v5. When an external elevator button is pressed, the YOLOv5 model analyzes the camera video to determine whether there are people waiting, and if it determines that there are no people waiting, the button is automatically canceled. The study introduces an effective method of implementing object detection and communication technology through YOLOv5 and MQTT (Message Queuing Telemetry Transport) used in the Internet of Things. And using this, we implemented a smart elevator system that determines in real time whether there are people waiting. The proposed system can play the role of CCTV (closed-circuit television) while reducing unnecessary power consumption. Therefore, the proposed smart elevator system is expected to contribute to safety and security issues.
이동 물체 탐지(Object Detection) 기법은 대부분의 감시 시스템에서 가장 초기 단계로서, 이후에 물체 추적(Object Tracking) 및 물체 식별(Object Classification) 등의 지능 알고리듬에 입력으로 사용된다. 따라서 물체의 윤곽의 변화 없이 최대한 정교하게 이동 물체 영역 맵을 생성하는 것이 물체 탐지의 가장 중요한 요소가 된다. 카메라가 고정되어 있는 경우에는 현재 들어오는 영상에 대한 확률적 배경 모델을 생성할 수 있지만, 팬틸트 카메라와 같이 영상의 좌표가 변하는 환경에서는 배경 모델도 계속 변하기 때문에 기존의 배경 모델을 그대로 사용할 수 없다. 본 논문에서는 팬틸트 카메라와 같이 동적인 카메라에서 이동 물체 탐지를 위해, 국소 특징점(Local Feature)를 통해 카메라의 움직임을 판단하여 연속되는 영상간의 변환 행렬(Transformation Matrix)를 구하고 하고, 확률적 배경 모델링을 통한 이동 물체 탐지 기법을 제안한다. 자제 촬영한 이동 카메라 실험영상을 통해서 이 알고리듬이 동적 배경에서도 매우 강인하게 동작하는 것을 검증하였다.
Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2008.10a
/
pp.297-302
/
2008
The positioning technology for a moving object is an important and essential component of ubiquitous computing environment and applications, for which Radio Frequency Identification(RFID) has been considered as a core technology. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and kcan be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in I-Dimensional space, the square in 2-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.
Mongolian historical and cultural monuments on settlement areas of stone inscriptions, stone images, rock-drawings, remains of cities, architecture are still telling us their stories. These monuments depict the understanding of the word, philosophical and artistic outlook, beliefs, religion, national art, language, culture and traditions of Mongols [1]. Nowadays computer science, especially computer vision is applying in the other science fields. The main problem is how to apply and which algorithm can detect and classify the objects correctly. In this paper, we propose a method to detect object from Mongolian nomadic environment images. This work proposes a method for object detection that is the combination of the binary operations in the edge detection results. We found out the best method and parameters of state-of-the-art machine learning algorithms. In experimental result, we evaluate our results with 10-fold cross validation and split 66% strategies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.