• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.031 seconds

Fixed and Moving Automatic FOD Detection Test using Radar and EO Camera (소형 Radar와 EO 카메라를 이용한 고정형 및 이동형 FOD 자동탐지 시험)

  • Kim, Young-Bin;Kim, Sung-Hee;Park, Myung-Kyu;Park, Kwang-Gun;Kim, Min-su;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.479-484
    • /
    • 2020
  • Foreign object debris (FOD) is a generic term for all substances that may pose a threat to aircraft operations on a runway. In the past, FOD detection and collection methods using human resources were very inefficient in terms of efficiency and economics, so it is essential to develop an unmanned FOD detection system suitable for domestic use. In this paper, the fixed FOD automatic detection system and mobile FOD automatic detection system using EO camera and radar were studied and developed at the Taean airfield of Hanseo University, and fixed and mobile method were operated to confirm that automatic FOD detection in the runway of the airfield is possible regardless of illumination and weather conditions.

Worker Collision Safety Management System using Object Detection (객체 탐지를 활용한 근로자 충돌 안전관리 시스템)

  • Lee, Taejun;Kim, Seongjae;Hwang, Chul-Hyun;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1259-1265
    • /
    • 2022
  • Recently, AI, big data, and IoT technologies are being used in various solutions such as fire detection and gas or dangerous substance detection for safety accident prevention. According to the status of occupational accidents published by the Ministry of Employment and Labor in 2021, the accident rate, the number of injured, and the number of deaths have increased compared to 2020. In this paper, referring to the dataset construction guidelines provided by the National Intelligence Service Agency(NIA), the dataset is directly collected from the field and learned with YOLOv4 to propose a collision risk object detection system through object detection. The accuracy of the dangerous situation rule violation was 88% indoors and 92% outdoors. Through this system, it is thought that it will be possible to analyze safety accidents that occur in industrial sites in advance and use them to intelligent platforms research.

Comparison Speed of Pedestrian Detection with Parallel Processing Graphic Processor and General Purpose Processor (병렬처리 그래픽 프로세서와 범용 프로세서에서의 보행자 검출 처리 속도 비교)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.239-246
    • /
    • 2015
  • Video based object detection is basic technology of implementing smart CCTV system. Various features and algorithms are developed to detect object, however computations of them increase with the performance. In this paper, performances of object detection algorithms with GPU and CPU are compared. Adaboost and SVM algorithm which are widely used to detect pedestrian detection are implemented with CPU and GPU, and speeds of detection processing are compared for the same video. As results of frame rate comparison of Adaboost and SVM algorithm, it is shown that the frame rate with GPU is faster than CPU.

Motion detection using stereo vision (스테레오 비젼을 이용한 움직임 검출)

  • 권창일;원성혁;김민기;이기식;김광택;정일준
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.206-209
    • /
    • 2000
  • Almost vision application systems use 2-D information by taking only one camera. Recently it arises to utilize 3-D information, which is distance from camera to object, because 2-D information is not sufficient. Therefore, we take stereo camera system. In motion detection algorithm using stereo vision, it operates like one camera system, which takes advantage of correlation, edge, and difference algorithm, when it detects any motion. At that time, to detect motion, it compares two images, which is from two cameras, to calculate disparity that contains distance information. By disparity, it can compute real distance and size of object information. We describe a motion detection algorithm which computes 3-D distance and object size in real time.

  • PDF

Development of Core Technology for Object Detection in Excavation Work Using Laser Sensor (레이저 센서를 이용한 굴삭기 작업의 장애물 탐지 요소기술 개발)

  • Soh, Ji-Yune;Kim, Min-Woong;Lee, Jun-Bok;Han, Choong-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.71-77
    • /
    • 2008
  • Earthwork is very equipment-intensive task and researches related to automated excavation have been conducted. There is an issue to secure the safety for an automated excavating system. Therefore, this paper focuses on how to improve safety for semi- or fully-automated backhoe excavation. The primary objective of this research is to develop the core technology for automated object detection in excavation work. In order to satisfy the research objective, a diverse sensing technologies are investigated and analysed in terms of functions, durability, and reliability. The authors developed detecting algorithm for the objects using laser sensor and verified its performance by several tests. The results of this study would be the basis for developing the automated object detection system.

Moving Object Detection and Counting System Using Difference Image Technique (차영상 기법을 이용한 이동 객체 탐지 및 계수 시스템)

  • Jeong, Jongmyeon;Kim, Hoyoung;Song, Sion
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.251-252
    • /
    • 2014
  • 본 논문에서는 차영상 기법을 이용하여 이동하는 객체를 탐지하고 계수하는 시스템을 제안한다. 제안된 시스템은 카메라를 통해 들어온 입력 영상과 배경의 차이를 통해 객체를 탐지하고 객체의 움직임을 분석하여 이동 객체를 계수한다. 실험 결과를 통해 물체의 이동 객체의 탐지 및 계수가 이루어짐을 확인 할 수 있다.

  • PDF

Robot Arm Control System using Deep Learning Object Detection (딥러닝 객체 검출을 이용한 로봇 팔 제어 시스템)

  • Lee, Se-Hoon;Kim, Jae-Seung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.255-256
    • /
    • 2019
  • 본 논문에서는 물체를 집기(picking) 위해 필요한 깊이 값을 특수카메라인 리얼센스를 사용하여 받아와서 2D 카메라로는 하지 못하는 로봇 팔 피킹 시스템을 구현하였다. 객체 인식은 텐서플로우 객체 검출 라이브러리를 사용하여 정확도를 높였고, ROS 기반의 rviz, moveit, gazebo 등의 패키지를 사용하여 아두이노와 통신하며 로봇팔 하드웨어로 인식된 객체를 피킹하는 시스템을 구현하였다.

  • PDF

Fast Object Detection with DPM using Adaptive Bilinear Interpolated Image Pyramid (적응적 쌍선형 보간 이미지 피라미드를 이용한 DPM 기반 고속 객체 인식 기법)

  • Han, Gyu-Dong;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.362-373
    • /
    • 2020
  • Recently, as autonomous vehicles and intelligent CCTV are growing more interest, the efficient object detection is essential technique. The DPM(Deformable Part Models) which is basis of this paper have used a typical object system that represents highly variable objects using mixtures of deformable part for object. Although it shows high detection performance by capturing part shape and configuration of object model, but it is limited to use in real application due to the complicated algorithm. In this paper, instead of image feature pyramid that takes up a large amount of computation in one part of the detector, we propose a method to reduce the computation speed by reconstructing a new image feature pyramid that uses adaptive bilinear interpolation of feature maps obtained on a specific image scale. As a result, the detection performance for object was lowered a little by 2.82%, however, the proposed detection method improved the speed performance by 10% in comparison with original DPM.

Study on Vision based Object Detection Algorithm for Passenger' s Safety in Railway Station (철도 승강장 승객안전을 위한 비전기반 물체 검지 알고리즘 연구)

  • Oh, Seh-Chan;Park, Sung-Hyuk;Jeong, Woo-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.553-558
    • /
    • 2008
  • Advancement in information technology have enabled applying vision sensor to railway, such as CCTV. CCTV has been widely used in railway application, however the CCTV is a passive system that provide limited capability to maintain safety from boarding platform. The station employee should monitor continuously CCTV monitors. Therefore immediate recognition and response to the situation is difficultin emergency situation. Recently, urban transit operators are pursuing applying an unattended station operation system for their cost reduction. Therefore, an intelligent monitoring system is need for passenger's safety in railway. The paper proposes a vision based monitoring system and object detection algorithm for passenger's safety in railway platform. The proposed system automatically detects accident in platform and analyzes level of danger using image processing technology. The system uses stereo vision technology with multi-sensors for minimizing detection error in various railway platform conditions.

  • PDF

Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System (심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증)

  • Kim, Youngsoo;Lee, Junbeom;Lee, Chanyoung;Jeon, Hyeri;Kim, Seungpil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.