• Title/Summary/Keyword: object clustering

Search Result 272, Processing Time 0.026 seconds

A Study on Density-Based Clustering Method Considering Directionality (방향성을 고려한 밀도 기반 클러스터링 기법에 관한 연구)

  • Jinman Kim;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.38-44
    • /
    • 2024
  • This research proposed DBSCAN-D, which is a clustering technique for locating POI based on existing density-based clustering research, such as GPS data, generated by moving objects. This method is designed based on 'staying time' and 'directionality' extracted from the relationship between GPS data. The staying time can be extracted through the difference in the reception time between data using the time at which the GPS data is received. Directionality can be expressed by moving the area of data generated later in the direction of the position of the previously generated data by concentrating on the point where the GPS data is sequentially generated. Through these two properties, it is possible to perform clustering suitable for the data set generated by the moving object.

  • PDF

MOC: A Multiple-Object Clustering Scheme for High Performance of Page-out in BSD VM (MOC: 다중 오브젝트 클러스터링을 통한 BSD VM의 페이지-아웃 성능 향상)

  • Yang, Jong-Cheol;Ahn, Woo-Hyun;Oh, Jae-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.476-487
    • /
    • 2009
  • The virtual memory system in 4.4 BSD operating systems exploits a clustering scheme to reduce disk I/Os in paging out (or flushing) modified pages that are intended to be replaced in order to make free rooms in memory. Upon the page out of a victim page, the scheme stores a cluster (or group) of modified pages contiguous with the victim in the virtual address space to swap disk at a single disk write. However, it fails to find large clusters of contiguous pages if applications change pages not adjacent with each other in the virtual address space. To address the problem, we propose a new clustering scheme called Multiple-Object Clustering (MOC), which together stores multiple clusters in the virtual address space at a single disk write instead of paging out the clusters to swap space at separate disk I/Os. This multiple-cluster transfer allows the virtual memory system to significantly decrease disk writes, thus improving the page-out performance. Our experiments in the FreeBSD 6.2 show that MOC improves the execution times of realistic benchmarks such as NS2, Scimark2 SOR, and nbench LU over the traditional clustering scheme ranging from 9 to 45%.

Clustering Analysis of Object Segmentation applying Wavelet Morphology (웨이브렛 형태학 알고리즘 적용한 객체 분할의 클러스터링 분석)

  • Baek, Deok-Soo;Byun, Oh-Sung;Kang, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.39-48
    • /
    • 2006
  • This paper is proposed the wavelet morphology algorithm with the spatial auto-object segmentation concept and the clustering concept. When it is segmented the color face by using the proposed algorithm, it is made to the simple image. Also, it is used the spatial quality in order to segment and detect the image as a real time without the user's manufacturing. This removed a small part that is regarded as a noise in image by HSV color model and applied the wavelet morphology to remove a part excepting for the face image. In this paper, it is made a comparison between the wavelet morphology algorithm and the morphology algorithm. And It is showed to accurately detect the face object parts in the image appled to HSV color space model.

Abstract Representation of Events on Object-Oriented Programs (객체지향 프로그램에서 이벤트 추상화 표현)

  • Lim, Keun;Lee, Kyung-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1257-1266
    • /
    • 1997
  • The concepts of class, inheritance and information hicing and so on provide the great strengthes of object-oriented languages, but they also introduce diffculties in porfram analysis and understanding. Particulary, it is move difficult to umderstand the dyamic aspects than the static ones of object-oriented programs. The dyamicaspects can be understood by recognizing the event's reciprocal action among the classes. In this paper, it will be supplied to the reprecentation of event abstraction which is useful for understanding the object-oriented programs.And the clustering concept with the events will be applied to abstract the events. By clustering the events, user can get the information about function of the classes and the reteival of the class library.

  • PDF

Advanced Bounding Box Prediction With Multiple Probability Map

  • Lee, Poo-Reum;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.63-68
    • /
    • 2017
  • In this paper, we propose a bounding box prediction algorithm using multiple probability maps to improve object detection result of object detector. Although the performance of object detectors has been significantly improved, it is still not perfect due to technical problems and lack of learning data. Therefore, we use the result correction method to obtain more accurate object detection results. In the proposed algorithm, the preprocessed bounding box created as a result of object detection by the object detector is clustered in various form, and a conditional probability is given to each cluster to make multiple probability map. Finally, multiple probability map create new bounding box of object using morphological elements. Experiment results show that the newly predicted bounding box reduces the error in ground truth more than 45% on average compared to the previous bounding box.

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.

K-means based Clustering Method with a Fixed Number of Cluster Members

  • Yi, Faliu;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1160-1170
    • /
    • 2014
  • Clustering methods are very useful in many fields such as data mining, classification, and object recognition. Both the supervised and unsupervised grouping approaches can classify a series of sample data with a predefined or automatically assigned cluster number. However, there is no constraint on the number of elements for each cluster. Numbers of cluster members for each cluster obtained from clustering schemes are usually random. Thus, some clusters possess a large number of elements whereas others only have a few members. In some areas such as logistics management, a fixed number of members are preferred for each cluster or logistic center. Consequently, it is necessary to design a clustering method that can automatically adjust the number of group elements. In this paper, a k-means based clustering method with a fixed number of cluster members is proposed. In the proposed method, first, the data samples are clustered using the k-means algorithm. Then, the number of group elements is adjusted by employing a greedy strategy. Experimental results demonstrate that the proposed clustering scheme can classify data samples efficiently for a fixed number of cluster members.

Design and Development of Clustering Algorithm Considering Influences of Spatial Objects (공간객체의 영향력을 고려한 클러스터링 알고리즘의 설계와 구현)

  • Kim, Byung-Cheol
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.113-120
    • /
    • 2006
  • This paper proposes DBSCAN-SI that is an algorithm for clustering with influences of spatial objects. DBSCAN-SI that is extended from existing DBSCAN and DBSCAN-W converts from non-spatial properties to the influences of spatial objects during the spatial clustering. It increases probability of inclusion to the cluster according to the higher the influences that is affected by the properties used in clustering and executes the clustering not only respect the spatial distances, but also volume of influences. For the perspective of specific property-centered, the clustering technique proposed in this paper can makeup the disadvantage of existing algorithms that exclude the objects in spite of high influences from cluster by means of being scarcely close objects around the cluster.

  • PDF

Unification of neural network with a hierarchical pattern recognition

  • Park, Chang-Mock;Wang, Gi-Nam
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.197-205
    • /
    • 1996
  • Unification of neural network with a hierarchical pattern recognition is presented for recognizing large set of objects. A two-step identification procedure is developed for pattern recognition: coarse and fine identification. The coarse identification is designed for finding a class of object while the fine identification procedure is to identify a specific object. During the training phase a course neural network is trained for clustering larger set of reference objects into a number of groups. For training a fine neural network, expert neural network is also trained to identify a specific object within a group. The presented idea can be interpreted as two step identification. Experimental results are given to verify the proposed methodology.

  • PDF

Moving object segmentation and tracking using feature based motion flow (특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적)

  • 이규원;김학수;전준근;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1998-2009
    • /
    • 1998
  • An effective algorithm for tracking rigid or non-rigid moving object(s) which segments local moving parts from image sequence in the presence of backgraound motion by camera movenment, predicts the direction of it, and tracks the object is proposed. It requires no camera calibration and no knowledge of the installed position of camera. In order to segment the moving object, feature points configuring the shape of moving object are firstly selected, feature flow field composed of motion vectors of the feature points is computed, and moving object(s) is (are) segmented by clustering the feature flow field in the multi-dimensional feature space. Also, we propose IRMAS, an efficient algorithm that finds the convex hull in order to cinstruct the shape of moving object(s) from clustered feature points. And, for the purpose of robjst tracking the objects whose movement characteristics bring about the abrupt change of moving trajectory, an improved order adaptive lattice structured linear predictor is used.

  • PDF