This paper proposes an algorithm for 3D object detection by processing point cloud data of 3D LiDAR. Unlike 2D LiDAR, 3D LiDAR-based data was too vast and difficult to process in three dimensions. This paper introduces various studies based on 3D LiDAR and describes 3D LiDAR data processing. In this study, we propose a method of processing data of 3D LiDAR using clustering techniques for object detection and design an algorithm that fuses with cameras for clear and accurate 3D object detection. In addition, we study models for clustering 3D LiDAR-based data and study hyperparameter values according to models. When clustering 3D LiDAR-based data, the DBSCAN algorithm showed the most accurate results, and the hyperparameter values of DBSCAN were compared and analyzed. This study will be helpful for object detection research using 3D LiDAR in the future.
Speaker diarization is the task of determining the speakers for unlabeled data, and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) has been widely used in the field of speaker diarization for its simplicity and computational efficiency. One challenging issue, however, is that if different clusters in non-spatial dataset are adjacent to each other, over-clustering may occur which subsequently degrades the performance of DBSCAN. In this paper, we identify the drawbacks of DBSCAN and propose a new density clustering algorithm based on local distribution property around object. Variable density criterions for local density and spreadness of object are used for effective data clustering. We compare the proposed algorithm to DBSCAN in terms of clustering accuracy. Experimental results confirm that the proposed algorithm exhibits higher accuracy than DBSCAN without over-clustering and confirm that the new approach based on local density and object spreadness is efficient.
Cluster analysis has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because of clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy. It reduces running time by using grid-based sample. And other clustering applications can be more effective by using this methods with its original methods.
Kim, Seongjoon;Yang, Dongwon;Jung, Younghun;Kim, Sujin;Yoon, Joohong
Journal of the Korea Institute of Military Science and Technology
/
v.17
no.6
/
pp.810-820
/
2014
Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance are reported. In near field, several hits per an object are generated after signal processing of Radar data. Hence, clustering is an essential technique to estimate their shapes and positions precisely. This paper proposes a method of grouping hits in range-doppler domains into clusters which represent each object, according to the pre-defined rules. The rules are based on the perceptual cues to separate hits by object. The morphological connectedness between hits and the characteristics of SNR distribution of hits are adopted as the perceptual cues for clustering. In various simulations for the performance assessment, the proposed method yielded more effective performance than other techniques.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.250-257
/
2002
Clustering is a data mining method, which consists in discovering interesting data distributions in very large databases. In traditional data clustering, similarity of a cluster of object is measured by pairwise similarity of objects in that paper. In view of the nature of clustering transactions, we devise in this paper a novel measurement called item similarity and utilize this to perform clustering. With this item similarity measurement, we develop an efficient clustering algorithm for target marketing in each group.
Journal of the Korean Data and Information Science Society
/
v.14
no.3
/
pp.535-543
/
2003
Cluster analysis has been widely used in many applications, such as pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy.
Communications for Statistical Applications and Methods
/
v.10
no.2
/
pp.387-397
/
2003
Generally, most of researches that need a variable-clustering process use an exploratory factor analysis technique or a divisive hierarchical variable-clustering method based on a correlation matrix. And some researchers apply a object-clustering method to a distance matrix transformed from a correlation matrix, though this approach is known to be improper. On this paper an agglomerative hierarchical variable-clustering method based on a correlation matrix itself is suggested. It is derived from a geometric concept by using variate-spaces and a characterizing variate.
Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.
The Transactions of the Korea Information Processing Society
/
v.6
no.10
/
pp.2693-2706
/
1999
Reengineering to object-oriented system is needed to maintain the system and satisfy requirements of structure change. Target systems which should be reengineered to object-oriented system are difficult to change because these systems have no design document or their design document is inconsistent of source code. Using design document to identifying objects for these systems is improper. There are several researches which identify objects through procedural source code analysis. In this paper, we propose automatic object identification method based on clustering of VTFG(Variable-Type-Function Graph) which represents relations among variables, types, and functions. VTFG includes relations among variables, types, and functions that may be basis of objects, and weights of these relations. By clustering related variables, types, and functions using their weights, our method overcomes limit of existing researches which identify too big objects or objects excluding many functions. The method proposed in this paper minimizes user's interaction through automatic object identification and make it easy to reenginner procedural system to object-oriented system.
Lee, Sung Kap;Park, Young Soo;Lee, Gang Seong;Lee, Jong Yong;Lee, Sang Hun
Journal of Digital Convergence
/
v.11
no.12
/
pp.459-465
/
2013
This paper is a study on an object extraction method which using color features of an object and background in the image. A human recognizes an object through the color difference of object and background in the image. So we must to emphasize the color's difference that apply to extraction result in this image. Therefore, we have converted to HSV color images which similar to human visual system from original RGB images, and have created two each other images that applied Median Filter and we merged two Median filtered images. And we have applied the Mean Shift algorithm which a data clustering method for clustering color features. Finally, we have normalized 3 image channels to 1 image channel for binarization process. And we have created object map through the binarization which using average value of whole pixels as a threshold. Then, have extracted major object from original image use that object map.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.