• Title/Summary/Keyword: object clustering

Search Result 272, Processing Time 0.024 seconds

Improved Parameter Inference for Low-Cost 3D LiDAR-Based Object Detection on Clustering Algorithms (클러스터링 알고리즘에서 저비용 3D LiDAR 기반 객체 감지를 위한 향상된 파라미터 추론)

  • Kim, Da-hyeon;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.71-78
    • /
    • 2022
  • This paper proposes an algorithm for 3D object detection by processing point cloud data of 3D LiDAR. Unlike 2D LiDAR, 3D LiDAR-based data was too vast and difficult to process in three dimensions. This paper introduces various studies based on 3D LiDAR and describes 3D LiDAR data processing. In this study, we propose a method of processing data of 3D LiDAR using clustering techniques for object detection and design an algorithm that fuses with cameras for clear and accurate 3D object detection. In addition, we study models for clustering 3D LiDAR-based data and study hyperparameter values according to models. When clustering 3D LiDAR-based data, the DBSCAN algorithm showed the most accurate results, and the hyperparameter values of DBSCAN were compared and analyzed. This study will be helpful for object detection research using 3D LiDAR in the future.

Local Distribution Based Density Clustering for Speaker Diarization (화자분할을 위한 지역적 특성 기반 밀도 클러스터링)

  • Rho, Jinsang;Shon, Suwon;Kim, Sung Soo;Lee, Jae-Won;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.303-309
    • /
    • 2015
  • Speaker diarization is the task of determining the speakers for unlabeled data, and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) has been widely used in the field of speaker diarization for its simplicity and computational efficiency. One challenging issue, however, is that if different clusters in non-spatial dataset are adjacent to each other, over-clustering may occur which subsequently degrades the performance of DBSCAN. In this paper, we identify the drawbacks of DBSCAN and propose a new density clustering algorithm based on local distribution property around object. Variable density criterions for local density and spreadness of object are used for effective data clustering. We compare the proposed algorithm to DBSCAN in terms of clustering accuracy. Experimental results confirm that the proposed algorithm exhibits higher accuracy than DBSCAN without over-clustering and confirm that the new approach based on local density and object spreadness is efficient.

Clustering Algorithm by Grid-based Sampling

  • Park, Hee-Chang;Ryu, Jee-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.97-108
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because of clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy. It reduces running time by using grid-based sample. And other clustering applications can be more effective by using this methods with its original methods.

  • PDF

Range-Doppler Clustering of Radar Data for Detecting Moving Objects (이동물체 탐지를 위한 레이다 데이터의 거리-도플러 클러스터링 기법)

  • Kim, Seongjoon;Yang, Dongwon;Jung, Younghun;Kim, Sujin;Yoon, Joohong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.810-820
    • /
    • 2014
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance are reported. In near field, several hits per an object are generated after signal processing of Radar data. Hence, clustering is an essential technique to estimate their shapes and positions precisely. This paper proposes a method of grouping hits in range-doppler domains into clusters which represent each object, according to the pre-defined rules. The rules are based on the perceptual cues to separate hits by object. The morphological connectedness between hits and the characteristics of SNR distribution of hits are adopted as the perceptual cues for clustering. In various simulations for the performance assessment, the proposed method yielded more effective performance than other techniques.

Transactions Clustering based on Item Similarity (아이템의 유사도를 고려한 트랜잭션 클러스터링)

  • 이상욱;김재련
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.250-257
    • /
    • 2002
  • Clustering is a data mining method, which consists in discovering interesting data distributions in very large databases. In traditional data clustering, similarity of a cluster of object is measured by pairwise similarity of objects in that paper. In view of the nature of clustering transactions, we devise in this paper a novel measurement called item similarity and utilize this to perform clustering. With this item similarity measurement, we develop an efficient clustering algorithm for target marketing in each group.

  • PDF

Clustering Algorithm by Grid-based Sampling

  • Park, Hee-Chang;Ryu, Jee-Hyun;Lee, Sung-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.535-543
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such as pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

An Agglomerative Hierarchical Variable-Clustering Method Based on a Correlation Matrix

  • Lee, Kwangjin
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.387-397
    • /
    • 2003
  • Generally, most of researches that need a variable-clustering process use an exploratory factor analysis technique or a divisive hierarchical variable-clustering method based on a correlation matrix. And some researchers apply a object-clustering method to a distance matrix transformed from a correlation matrix, though this approach is known to be improper. On this paper an agglomerative hierarchical variable-clustering method based on a correlation matrix itself is suggested. It is derived from a geometric concept by using variate-spaces and a characterizing variate.

Realtime Object Region Detection Robust to Vehicle Headlight (차량의 헤드라이트에 강인한 실시간 객체 영역 검출)

  • Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

A Method of Object Identification from Procedural Programs (절차적 프로그램으로부터의 객체 추출 방법론)

  • Jin, Yun-Suk;Ma, Pyeong-Su;Sin, Gyu-Sang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2693-2706
    • /
    • 1999
  • Reengineering to object-oriented system is needed to maintain the system and satisfy requirements of structure change. Target systems which should be reengineered to object-oriented system are difficult to change because these systems have no design document or their design document is inconsistent of source code. Using design document to identifying objects for these systems is improper. There are several researches which identify objects through procedural source code analysis. In this paper, we propose automatic object identification method based on clustering of VTFG(Variable-Type-Function Graph) which represents relations among variables, types, and functions. VTFG includes relations among variables, types, and functions that may be basis of objects, and weights of these relations. By clustering related variables, types, and functions using their weights, our method overcomes limit of existing researches which identify too big objects or objects excluding many functions. The method proposed in this paper minimizes user's interaction through automatic object identification and make it easy to reenginner procedural system to object-oriented system.

  • PDF

An Automatic Object Extraction Method Using Color Features Of Object And Background In Image (영상에서 객체와 배경의 색상 특징을 이용한 자동 객체 추출 기법)

  • Lee, Sung Kap;Park, Young Soo;Lee, Gang Seong;Lee, Jong Yong;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.459-465
    • /
    • 2013
  • This paper is a study on an object extraction method which using color features of an object and background in the image. A human recognizes an object through the color difference of object and background in the image. So we must to emphasize the color's difference that apply to extraction result in this image. Therefore, we have converted to HSV color images which similar to human visual system from original RGB images, and have created two each other images that applied Median Filter and we merged two Median filtered images. And we have applied the Mean Shift algorithm which a data clustering method for clustering color features. Finally, we have normalized 3 image channels to 1 image channel for binarization process. And we have created object map through the binarization which using average value of whole pixels as a threshold. Then, have extracted major object from original image use that object map.