• Title/Summary/Keyword: object clustering

Search Result 272, Processing Time 0.021 seconds

Motion Object Segmentation based on Clustering using Color and Position features (색상과 위치정보를 이용한 클러스터링 기반의 움직이는 객체의 검출)

  • 정윤주;김성동;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.306-308
    • /
    • 2003
  • 본 논문은 컬러영상내 움직이는 객체의 효과적인 검출을 위해 색상과 위치정보를 적용시킨 K-means 클러스터링 알고리즘을 이용하여 움직이는 객체들을 추출한 방법을 제안하고 있다. 최종 클러스터링된 중심픽셀(prototype)이 갖고있는 RGB 값을 사용해 프레임을 비교해 객체와 배경의 분리를 가능하게 했고 마지막으로 후처리를 이용해 남아있는 배경잡음을 제거하였다. 본 연구의 실험은 여러 교통장면을 포함한 다양한 영상에서 이루어졌으며 실험결과 제안된 알고리즘은 기존의 픽셀이나 블록기반의 방법에 비해 보다 정확한 객체 검출이 가능했으며 한 가지 특징 정보를 사용한 클러스터링에 비해 보다 높은 정확도를 보였다.

  • PDF

Object Model ing from Depth Information Using Z-gradient (3차원 정보로 부터 Z축의 기울기를 이용한 물체의 조형.)

  • Kim, T.Y.;Cho, D.U.;Choi, B.U.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1069-1072
    • /
    • 1987
  • In this paper, we drive useful data from 3-D depth information as input using discontinuity boundary or clustering. And using magnitude and direction of z-gradient we classify the data into adaptable primitive types through intrinsic and stochastical processing. After these processing information is reconstructed for forming data base. And make relationship and standard view position for matching.

  • PDF

An Effective Detection of Bimean and its Application into Image Segmentation by an Interative Algorithm Method (반복적인 알고리즘 방법에 의한 효과적인 양평균 검출 및 영상분할에 응용)

  • Heo, Pil-U
    • 연구논문집
    • /
    • s.25
    • /
    • pp.147-154
    • /
    • 1995
  • In this paper, we discussed the convergence and the properties of an iterative algorithm method in order to improve a bimean clustering algorithm. This algorithm that we have discussed choose automatically an optimum threshold as a result of an iterative process, successive iterations providing increasingly cleaner extractions of the object region, The iterative approach of a proposed algorithm is seen to select an appropriate threshold for the low contrast images.

  • PDF

A design of MPEG-4 video object segmentation using color/motion information (칼라/움직임 정보를 이용한 MPEG-4 비디오 객체 분할 설계)

  • 김준기;이호석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.206-208
    • /
    • 2000
  • 본 논문은 칼라 정보와 움직임 정보를 이용한 객체 분할 기법의 설계에 대하여 소개한다. 객체 분할 알고리즘은 L*u*v 공간의 칼라 특성과 움직임 특성을 결합하여 설계하였다. 즉 공간 분할은 mean shift 칼라 클러스터링 알고리즘(color clustering algorithm)을 사용하여 중심 칼라 영역에 따라 동일한 칼라 지역으로 통합한다. 시간 분할은 움직임 검출을 위하여 affine six parameter 움직임 모델과 optical flow equation를 이용하여 움직임이 발생한 부분을 검출한다. 다음에 공간 분할과 시간 분할에 따라 결과를 통합하고 MAD(mean absolute difference)를 사용하여 객체를 추출하는 알고리즘을 설계하였다.

  • PDF

Content based Image retrieval using Object Shape Token Clustering (객체 외형의 토큰 군집화를 통한 내용 기반 영상 검색)

  • Jeong Seok-hyun;KIM Gae-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.880-882
    • /
    • 2005
  • 내용기반 영상 검색 시스템은 데이터베이스에 저장된 정지영상의 색이나, 질감, 형태 등의 특징을 이용한다. 본 연구는 실험 영상 집합에서 주요 객체를 추출하여, 객체들의 외형으로부터 분리된 토큰들을 군집화 한 후, 그 군집단위를 색인어로 사용하여 검색하는 방법이다. 기존의 내용기반 영상 검색 시스템에서 모양 정보는 그 표현과 색인 정합 등의 문제로 처리 방법이 명확하지 않았고, 회전, 크기 변화, 폐색 등에 민감했다. 따라서 기존 방법의 문제점을 해결하기 위해서 토큰을 이용한 색인을 이용하여 지역 정보와, 이들 지역 정보들의 관계에 의한 전역 정보를 복합적으로 이용한 방법을 제안한다.

  • PDF

Multi-Object Tracking using Real-Time Background Image and Ranking Distance Algorithm (실시간 배경영상과 거리 Ranking을 통한 다개체 추적)

  • 서영욱;차의영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.575-578
    • /
    • 2003
  • 본 논문은 제한된 영역 안의 다수 물고기를 추적하는 방법을 제안한다. 고정된 카메라로 물고기가 있는 수조의 영상을 얻은 다음 실시간으로 얻는 매경영상을 통해 물고기의 이미지만을 얻는다. 이렇게 얻어진 이미지를 ART2 알고리즘을 통해 clustering을 하고 각각의 물고기라 추정되는 cluster와 이전까지 측정되어진 물고기 좌표와의 거리 계산을 통해 각각의 물고기의 개체 인식을 하게 된다. 본 논문에서는 기존의 물고기 이미지를 얻는 방법을 개선하여 다 개체 추적을 위한 깨끗한 개체 이미지를 얻는 방법과, 각 cluster들과 이진 물고기 위치와의 거리계산을 통한 개체 인식 방법에 대해 초점을 맞추었다.

  • PDF

Target Object Extraction Based on Clustering (클러스터링 기반의 목표물체 분할)

  • Jang, Seok-Woo;Park, Young-Jae;Kim, Gye-Young;Lee, Suk-Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.227-228
    • /
    • 2013
  • 본 논문에서는 연속적으로 입력되는 스테레오 입체 영상으로부터 2차원과 3차원의 특징을 결합하여 군집화함으로써 대상 물체를 보다 강건하게 분할하는 기법을 제안한다. 제안된 방법에서는 촬영된 장면의 좌우 영상으로부터 스테레오 정합 알고리즘을 이용해 영상의 각 화소별로 카메라와 물체 사이의 거리를 나타내는 깊이 특징을 추출한다. 그런 다음, 깊이와 색상 특징을 효과적으로 군집화하여 배경에 해당하는 영역을 제외하고, 전경에 해당하는 대상 물체를 감지한다. 실험에서는 제안된 방법을 여러가지 영상에 적용하여 테스트를 해 보았으며, 제안된 방법이 기존의 2차원 기반의 물체 분리 방법에 비해 보다 강건하게 대상물체를 분할함을 확인하였다.

  • PDF

Recognition of dimension lines based on extraction of the objet in mechanical drawings (기계 도면에서 객체의 분리 추출에 기반한 치수선의 인식)

  • 정영수;박길흠
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.120-131
    • /
    • 1997
  • This paper prsents a new method that automatically recognizes the dimension lines (consisting of shape lines, tail lines and extension lines) from the mechanical drawings. In the proposed method, the object and closed-loop symbols are separated from the character-free drawings. Then the object lines and interpretation lines are vectorized by using several techniques such as thinning, line-vectorization, and vector-clustering. Finally, after recognizing arrowheads by using pattern matching, we recognize dimension lines from interpretation lines by using arrohead's directional vector and centroid. By using the methods of geometric modeling and mathematical operation, the proposed method readility recognizes the dimension lines from complex drawings. Experimental resuls are presented, which are obtained by applying the proposed method to drawings drawn in compliance with the KS drafting standard.

  • PDF

Object Movement Detection Integrating Robust Estimation and Clustering (강건 예측과 군집화를 결합한 물체의 움직임 감지)

  • Jang, Seok-Woo;Huh, Moon-Haeng;Lee, Sang-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.257-260
    • /
    • 2011
  • 본 논문에서는 비디오 데이터로부터 물체의 초기 움직임 영역을 자동으로 검출하는 방법을 소개한다. 제안하는 시스템은 먼저 입력 영상을 받아들인 후 인접된 영상으로부터 일정 크기의 정방향의 블록 단위로 움직임을 나타내는 모션 벡터를 추출한다. 그리고 추출된 모션벡터를 아웃라이어를 제거하는 강건 예측 알고리즘에 적용하여 배경에 해당하는 모션벡터와 잡음 및 움직이는 물체에 해당하는 모션벡터를 구분한다. 그런 다음, 군집화 알고리즘을 적용하여 이동하는 물체를 나타내는 모션벡터를 군집화하고, 군집화된 모션벡터에 해당하는 영역의 크기가 일정 수치 값 이상일 때 움직이는 물체가 감지되었다고 판단한다. 본 논문의 실험에서는 제안된 물체의 움직임 감지 방법이 기존의 방법에 비해 성능이 보다 우수함을 보인다.

  • PDF

Content-Based Image Retrieval System using Feature Extraction of Image Objects (영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템)

  • Jung Seh-Hwan;Seo Kwang-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.