• Title/Summary/Keyword: nyquist frequency

Search Result 125, Processing Time 0.019 seconds

Optical Design of a Subminiature Catadioptric Omnidirectional Optical System with an LED Illumination System for a Capsule Endoscope (LED 조명계를 결합한 캡슐내시경용 초소형 반사굴절식 전방위 광학계의 설계)

  • Moon, Tae Sung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.68-78
    • /
    • 2021
  • A subminiature catadioptric omnidirectional optical system (SCOOS) with 2 mirrors, 6 plastic aspherical lenses, and an illumination system of 6 light emitting diodes, to observe the 360° panoramic image of the inner intestine, is optically designed and evaluated for a capsule endoscope. The total length, overall length, half field of view (HFOV), and F-number of the SCOOS are 14.3 mm, 8.93 mm, 51°~120°, and 3.5, respectively. The optical system has a complementary metal-oxide-semiconductor sensor with 0.1 megapixels, and an illumination system of 6 light-emitting diodes (LEDs) with 0.25 lm to illuminate on the 360° side view of the intestine along the optical axis. As a result, the spatial frequency at the modulation transfer function (MTF) of 0.3, the depth of focus, and the cumulative probability of tolerance at the Nyquist frequency of 44 lp/mm and MTF of 0.3 of the optimized optical system are obtained as 130 lp/mm, -0.097 mm to +0.076 mm, and 90.5%, respectively. Additionally, the simulated illuminance of the LED illumination system at the inner surface of the intestine within HFOV, at a distance of 15.0 mm from the optical axis, is from a minimum of 315 lx to a maximum of 725 lx, which is a sufficient illumination and visibility.

Optical Design of a Modified Catadioptric Omnidirectional Optical System for a Capsule Endoscope to Image Simultaneously Front and Side Views on a RGB/NIR CMOS Sensor (RGB/NIR CMOS 센서에서 정면 영상과 측면 영상을 동시에 결상하는 캡슐 내시경용 개선된 반사굴절식 전방위 광학계의 광학 설계)

  • Hong, Young-Gee;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.286-295
    • /
    • 2021
  • A modified catadioptric omnidirectional optical system (MCOOS) using an RGB/NIR CMOS sensor is optically designed for a capsule endoscope with the front field of view (FOV) in visible light (RGB) and side FOV in visible and near-infrared (NIR) light. The front image is captured by the front imaging lens system of the MCOOS, which consists of an additional three lenses arranged behind the secondary mirror of the catadioptric omnidirectional optical system (COOS) and the imaging lens system of the COOS. The side image is properly formed by the COOS. The Nyquist frequencies of the sensor in the RGB and NIR spectra are 90 lp/mm and 180 lp/mm, respectively. The overall length of 12 mm, F-number of 3.5, and two half-angles of front and side half FOV of 70° and 50°-120° of the MCOOS are determined by the design specifications. As a result, a spatial frequency of 154 lp/mm at a modulation transfer function (MTF) of 0.3, a depth of focus (DOF) of -0.051-+0.052 mm, and a cumulative probability of tolerance (CPT) of 99% are obtained from the COOS. Also, the spatial frequency at MTF of 170 lp/mm, DOF of -0.035-0.051 mm, and CPT of 99.9% are attained from the front-imaging lens system of the optimized MCOOS.

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

OPTICAL PERFORMANCE OF BREADBOARD AMON-RA IMAGING CHANNEL INSTRUMENT FOR DEEP SPACE ALBEDO MEASUREMENT (심우주 지구 반사율 측정용 아몬라 가시광 채널의 광학 시스템 제조 및 성능 평가)

  • Park, Won-Hyun;Kim, Seong-Hui;Lee, Han-Shin;Yi, Hyun-Su;Lee, Jae-Min;Ham, Sun-Jung;Yoon, Jee-Yeon;Kim, Sug-Whan;Yang, Ho-Soon;Choi, Ki-Hyuk;Kim, Zeen-Chul;Lockwood, Mike;Morris, Nigel
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.79-90
    • /
    • 2007
  • The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm) in wavefront error, the ensquared energy of 61.7%($in\;14\;{\mu}m$) and the MTF of 35.3%(Nyquist frequency: $35.7\;mm^{-1}$) at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics (이중 시야 중적외선 광학계 비열화·나르시서스 분석)

  • Jeong, Do Hwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • We have designed a mid-infrared optical system for an airborne electro-optical targeting system. The mid-IR optical system is a dual-field-of-view (FOV) optics for an airborne electro-optical targeting system. The optics consists of a beam-reducer, a zoom lens group, a relay lens group, a cold stop conjugation optics, and an IR detector. The IR detector is an f/5.3 cooled detector with a resolution of $1280{\times}1024$ square pixels, with a pixel size of $15{\times}15{\mu}m$. The optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ and $5.40^{\circ}{\times}4.23^{\circ}$) by the insertion of two lenses into the zoom lens group. The IR optical system was designed in such a way that the working f-number (f/5.3) of the cold stop internally provided by the IR detector is maintained over the entire FOV when changing the zoom. We performed two analyses to investigate thermal effects on the image quality: athermalization analysis and Narcissus analysis. Athermalization analysis investigated the image focus shift and residual high-order wavefront aberrations as the working temperature changes from $-55^{\circ}C$ to $50^{\circ}C$. We first identified the best compensator for the thermal focus drift, using the Zernike polynomial decomposition method. With the selected compensator, the optics was shown to maintain the on-axis MTF at the Nyquist frequency of the detector over 10%, throughout the temperature range. Narcissus analysis investigated the existence of the thermal ghost images of the cold detector formed by the optics itself, which is quantified by the Narcissus Induced Temperature Difference (NITD). The reported design was shown to have an NITD of less than $1.5^{\circ}C$.