• Title/Summary/Keyword: nutritive salts (TN, TP)

Search Result 2, Processing Time 0.013 seconds

Analysis of the Water Quality Change Due to Water Level Control of Sayeon Dam (사연댐 수위조절시 수질변화 분석)

  • Lee, Sang Hyeon;Cho, Hong Je
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1069-1078
    • /
    • 2013
  • The Bangudae Petroglyphs, national treasure No. 285 is located within submerged upper districts of Sayeon dam supplying the main residential water in Ulsan. Of the many ways for the reservation of Petroglyphs located the altitude at 53~57 m, the plan that we take it out of the water lowering the water level from 60 m to 52 m has been examined mainly in case of controlling artificially the water level of the dam. In this paper, we examined expected problems from the loss of dam function and the change of water quality from water deterioration caused by the water level control of the Sayeon dam. Using the model of Vollenweider and CSTR (Continuous Stirred Tank Reactor), we analyzed the density change of BOD and COD, representative water quality index and the TP and TN, the main reason of algae growth. The result showed that the density of COD lowered a little but the density of TP and TN went up over 130% when controlling the water level from 60 m to 52 m. These changes cause a serious algae problem and if doing the water quality management as the density of TN and TP, the water quality would become worse. Water storage and supply residential water decreases, and the water quality becomes worse because of eutrophic state.

Water Quality Improvement of Stagnant Water using an Upflow Activated Carbon Biofilm Process and Microbial Community Analysis (상향류 활성탄 생물막 공정을 이용한 정체 수역 수질 개선 및 공정 내 미생물 군집 해석)

  • Oh, Yu-Mi;Lee, Jae-Ho;Park, Jeung-Jin;Choi, Gi-Choong;Park, Tae-Joo;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2010
  • The capacity of natural purification was limited by the interruption of natural flow and the problems such as eutrophication were occurred by nutritive salts accumulation in stagnant stream. Moreover, the inflow of non-point sources causes non-degradable materials to increase in stagnant stream. In this study, an upflow biological activated carbon (BAC) biofilm process comprised of anoxic, aerobic 1, and aerobic 2 reactors were introduced for treatment of stagnant stream and SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP were monitored in the upflow BAC biofilm reactors with continuous cycling. In order to simulate stagnant stream, the lake water of amusement park and golf course were stored as influent in a tank of $2m^3$ and hydraulic retention time (HRT) was changed into 6, 4, and 2 hours. At HRT 4hr and the lake water of amusement park as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP showed the best water quality improvement and were 69.8, 83.0, 91.3, 74.1, 74.7, and 88.9%, respectively. At HRT 4hr and the lake water of golf course as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN and TP were 78.5, 78.0, 80.2, 74.9, 55.6 and 97.5%, respectively. As the results of polymerase chain reaction - denaturing gel gradient electrophoresis (PCR-DGGE), microbial community was different depending on influent type. Fluorescence in situ hybridization (FISH) showed that nitrifying bacteria was dominant at HRT 4 hr. The biomass amount and microbial activities by INT-DHA test were not decrease even at lower HRT condition. In this study, the upflow BAC biofilm process would be considered to the water quality improvement of stagnant stream.