• Title/Summary/Keyword: nutritional compounds

Search Result 258, Processing Time 0.026 seconds

Regulation of Phycocyanin Development by Phenolic Compounds in the Cyanobacterium Anabaena sp. PCC 7120

  • Kim, Jin-Yong;Jo, Yeara;Kim, Young-Saeng;Lee, Eun-Jin;Yoon, Ho-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.445-449
    • /
    • 2006
  • Phenolic compounds are manufacturing by-products commonly found in industrial wastewater. The toxicity of high level phenolic compounds in wastewater threatens not only the aquatic organisms, but also many components of the adjacent ecosystem. One of the major light harvesting pigments in cyanobacteria is phycocyanin which can be rapidly and specifically degraded by external stimuli such as nutritional depletion or environmental stress. We employed the cyanobacterium Anabaena sp. PCC 7120 as an indicator organism in estimating the pollution level by phenolic compounds. The phycocyanin content of the cyanobacterium decreased without significantly altering the total chlorophyll as the phenol concentration in a medium increased. We examined the phenol contamination level using the correlation of the phycocyanin content and the phenol concentration. Our results indicated that no significant pollution by phenolic compounds was found in several waterbodies in the vicinity of Daegu, South Korea.

Characterization of Volatile Components in Eoyuk-jang (어육장의 휘발성 향기 성분 특성)

  • Yoon, Mi-Kyung;Choi, A-Reum;Cho, In-Hee;You, Min-Jung;Kim, Ji-Won;Cho, Mi-Sook;Lee, Jong-Mee;Kim, Young-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.366-371
    • /
    • 2007
  • The volatile components in Eoyuk-jang, a traditional Korean fermented food, were isolated using solvent extraction, and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 36 components, including 11 aliphatic hydrocarbons, 4 acids, 2 ketones, 5 phenols, 7 alcohols, 1 pyrazines, 4 pyrones and furanones, and 2 miscellaneous components, were found in Eoyuk-jang; among them, butanoic acid was quantitatively dominant. In addition, the aroma-active compounds were determined by gas chromatography-olfactometry (GC-O) using aroma extract dilution analysis (AEDA). A total of 20 aroma-active compounds were detected by GC-O. Butanoic acid (rancid) and methional (cooked potato-like) were the most potent aroma-active compounds with the highest FD factors $(Log_3$, FD), followed by 2-methyl-2-butanol (soysauce-like), 3-hydroxy-2-butanone (buttery), and 2-furanmethanol (burnt sugar-like).

Taste-Active and Nutritional Components of Thai Native Chicken Meat: A Perspective of Consumer Satisfaction

  • Lengkidworraphiphat, Phatthawin;Wongpoomchai, Rawiwan;Bunmee, Thanaporn;Chariyakornkul, Arpamas;Chaiwang, Niraporn;Jaturasitha, Sanchai
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.237-246
    • /
    • 2021
  • The taste-active and nutritional components of Thai native, broilers, black-boned, and spent hen chickens were analyzed. The amounts of tasty amino acids especially glutamic acid were the highest in Thai native chicken. The black-boned chicken had the highest arginine content, related to the least amount of consumer satisfaction. Concerning nutritional quality, choline, and taurine were deemed important for brain function. The black-boned chicken showed the highest choline and taurine contents, unlike that of the spent hens. In contrast, broilers presented the highest betaine content, which might be attributed to their lipid metabolism. L-carnitine content was abundant in black-boned and Thai native chickens. Moreover, the amounts of essential amino acids were high in Thai native chicken. In conclusion, black-boned chicken proved to be an excellent nutritional source for health-conscience consumers, whereas the Thai native chickens were flavourful and delicious.

Different Aspects of Mulberry Leaves Supplementation with Various Nutritional Compounds in Sericulture

  • Etebari, K.;Kaliwal, B.B.;Matindoost, L.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.1
    • /
    • pp.15-28
    • /
    • 2004
  • The supplementation of mulberry leaves, with the aim of yield, enhancement using vitamins, minerals and other compounds have generally been attended from 1990s and many researches have been conducted. More than 30 different compounds from complementary nutrients have been analyzed and in different regions where different climates various results have been achieved. This review has attempted to discuss the results of different works on enrichment of mulberry leaves with supplementary compound. Generally the most effects of these compounds are in the regions where productive parameters are low. In the areas that follow a normal pattern in economical parameters the enrichment of the leaves havent have significant economical effects.

Nutritional value and the kaempferol and quercetin contents of quinoa (Chenopodium quinoa Willd.) from different regions

  • Lee, Min-Jung;Sim, Ki Hyeon
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.680-687
    • /
    • 2018
  • This study compared the nutritional value of quinoa cultivated in different regions, i.e., Peru (PQ), United States (UQ), and Korea (KQ), focusing on their proximate and nutrient compositions and functional components. Moisture, protein, lipid, and ash contents were highest in KQ, and the carbohydrate content was the highest in UQ. KQ had the highest amount of total amino acids, especially lysine. KQ had the lowest levels of Na but the highest levels of K, P, Fe, Mg, Zn, and Mn. The antioxidant compounds, quercetin and kaempferol were not detected in KQ, which consequently had the lowest total phenolic and total flavonoid contents (TPC and TFC, respectively). These values were comparatively higher in UQ. Meanwhile, PQ had the highest TPC and TFC values as well as kaempferol content, but lacking quercetin. These results demonstrate that the nutritional value of quinoa varies according to the region in which it is cultivated.

Influence of Storage Temperature on Levels of Bioactive Compounds in Shiitake Mushrooms (Lentinula edodes)

  • Yonghyun Kim;Uk Lee;Hyun Ji Eo
    • Mycobiology
    • /
    • v.51 no.6
    • /
    • pp.445-451
    • /
    • 2023
  • Shiitake mushroom (Lentinula edodes) hold high nutritional and medicinal value as they contain an abundance of health-promoting compounds. However, the effect of long-term postharvest storage on the variation in the levels of health-promoting compounds has not been extensively studied. In this study, we investigated the changes in the levels of phenolic compounds, antioxidants, eritadenine, and ergothioneine in shiitake mushrooms stored at three different temperatures (1, 3, and 5 ℃) for 4 weeks. Compared to mushrooms stored at lower temperatures, those stored at 5 ℃ exhibited a higher level of total phenolics in their pileus after 2 weeks of storage; however, storage at 5 ℃ also increased the deterioration of the fruiting body of these mushrooms. In mushrooms stored at all temperatures, the eritadenine content in the pilei tended to increase up to 2 weeks of storage. In contrast, the ergothioneine content in the pileus decreased during storage, with a significantly lower level detected in mushrooms stored at 5 ℃ for 4 weeks. Together, these results suggest that the mechanisms underlying the accumulation of phenolics and eritadenine may be related to mushroom deterioration during storage. Our findings indicate that the levels of health-promoting compounds in shiitake mushrooms are influenced by storage temperature, suggesting the potential to control adjustments of specific bioactive compounds by regulating storage conditions.

Comparison of the Nutritional and Functional Compounds in Naked Oats (Avena sativa L.) Cultivated in Different Regions (재배지역 차이에 따른 쌀귀리 영양성분 및 기능성 성분 비교)

  • Ji-Hye Song;Dea-Wook Kim;Hak-Young Oh;Jong-Tak Yun;Yong-In Kuk;Kwang-Yeol Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.402-412
    • /
    • 2023
  • To cope with climate change, we compared the quality of naked oats (Avena sativa L.) cultivated in different regions. Naked oats were collected from domestic farms in different cultivation regions grouped as G1 and G2 for 3 years (2020-2022). The appearance, quality, and nutritional and functional compounds in the samples were assessed. In terms of appearance quality, the brightness and yellowness of the samples from the G1 region were significantly lower than those of the samples from the G2 region in 2020; however, no differences were observed between cultivation regions in the other 2 years. The results of testing the vitality of naked oats seeds showed that the electrical conductivity value was significantly lower in the samples from the G1 region than in those from the G2 region only in 2022. Among the nutritional components, moisture content was higher in the G2 region than in the G1 region over all 3 years, and the crude protein content was significantly higher in the G2 region than in the G1 region over all years. Carbohydrate content was significantly higher in the G1 region than in the G2 region in all 3 years and was inversely proportional to the crude protein content. The crude fat content tended to be significantly higher in the G1 region than in the G2 region, except in 2022. The levels of beta-glucan, a functional compound rich in naked oats, ranged between 3.4% and 4.2%, and except in 2020, there was no significant difference between cultivation regions. In addition, the content of avenanthramides, representative functional compounds that exist only in oats, was assessed. Over 2 years, in 2021 and 2022, the avenanthramide content was in the range of 2.4-20.7 ㎍/g and tended to be significantly higher in the G2 region than in the G1 region in both years. According to a survey of the average and minimum temperatures during the growing season of naked oats from 2020 to 2022, the average and minimum temperatures in January in the G2 region, which is the cultivation-limit area, were similar to those in Haenam in the G1 region. In conclusion, differences in nutritional and functional compounds were observed in naked oats grown in different cultivation areas. Therefore, considering the cultivation area of naked oats is expanding because of climate change, changes in the compounds that affect quality should be investigated.

Comparison of Solid Phase Microextraction-Gas Chromatograph/Pulsed Flame Photometric Detector (SPME-GC/PFPD) and Static Headspace-Gas Chromatograph/Pulsed Flame Photometric Detector (SH-GC/PEPD) for the Analysis of Sulfur-Containing Compounds (Solid phase microextraction-gas chromatograph/pulsed flame photometric detector(SPME-GC/PFPD)와 static headspace-gas chromatograph/pulsed flame photometric detector(SH-GC/PEPD)를 이용한 황 함유 화합물들의 분석 방법 비교)

  • Yang, Ji-Yeon;Kim, Young-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.695-701
    • /
    • 2005
  • Efficient method was established for analysis of sulfur-containing compounds, including dimethyl disulfide, dimethyl trisulfide, 3-methyl thiophene, allyl mercaptan, 2-methyl-3-furanthiol, and methional. Sulfur-containing compounds were extracted through solid phase microextraction (SPME) or static headspace extraction (SH), and quantified using gas chromatograph equipped with pulsed flame photometric detector. All sulfur compounds, except ally mercaptan, showed higher detection response when dissolved in hexane than in dichloromethane. Linear range was $10^2-10^4$. Dimethyl trisulfide showed lowest limit of detection (LOD) value of 15.2 ppt, and methional highest of 70.5 ppb. Highest extraction efficiency for sulfur-containing compounds, particularly polar and small molecular weight compounds, was observed in 75mm carboxen/polydimethylsiloxane fiber, followed by 65mm polydimethylsiloxane/divinylbenzene and 100mm polydimethylsiloxane. Compared to SPME, less sulfur-containing compounds could be analyzed by SH, mainly due to its low extraction efficiency, although lower amount of artifacts were formed during sample preparation.

Opportunities and Challenges in Nutrigenomics and Health Promotion

  • Milner John A.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.17-23
    • /
    • 2004
  • Not all individuals respond identically, or at times in the same direction, to dietary interventions. These inconsistencies likely arise because of diet and genomic interactions (nutrigenomics effects). A host of factors may influence the response to bioactive food components including specific polymorphisms (nutrigenetic effect), DNA methylation patterns and other epigenomic factors (nutritional epigenomic effects), capacity to induce anuo. suppress specific mRNA expression and patterns (nutritional transcriptomics), the occurrence and activity of proteins (proteomic effects), and/or the dose and temporal changes in cellular small molecular weight compounds will not only provide clues about specificity in response to food components, but assist in the identification of surrogate tissues and biomarkers that can predict a response. While this 'discovery' phase is critical for defining mechanisms and targets, and thus those who will benefit most from intervention, its true usefulness depends on moving this understanding into 'development' (interventions for better prevention, detection, diagnosis, and treatment) and a 'delivery' phase where information is provided to those most in need. It is incumbent on those involved with food and nutrition to embrace the 'omics' that relate to nutrition when considering not only the nutritional value of foods and their food components, but also when addressing acceptability and safety. The future of 'Nutrigenomics and Health Promotion' depends on the ability of the scientific community to identity appropriate biomarkers and susceptibility variants, effective communications about the merits of such undertakings with the health care community and with consumers, and doing all of this within a responsible bioethical framework.

  • PDF