• Title/Summary/Keyword: nutrient loading

Search Result 160, Processing Time 0.032 seconds

Estimation of Nutrient Loading and Trophic States in a Coastal Estuary

  • Bach, Quang-Dung;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.337-346
    • /
    • 2011
  • We investigated nutrient loading and trophic states in a coastal estuarine system in the Asan estuary by assessing phytoplankton biomass and using the trophic index (TRIX). The monthly and yearly nutrient loading (TN, TP) from freshwater discharge from the Asan and Sapgyo reservoirs into the estuary were estimated and analyzed with related factors. Monitoring data (physio-chemical and biological variables) collected at five estuary stations were used to assess trophic states. Descriptive statistics of total phytoplankton cells, chl a concentrations and primary productivity were also used to assess seasonal trophic status. N loading from freshwater ranged $1.0{\sim}1.3{\times}10^4$ ton yearly. The yearly P loading ranged between 350 and 400 ton during 2004~2006, increasing to 570 ton in 2007. Regression results suggest that DIN and DSi were correlated with freshwater discharge at the upper region. Based on phytoplankton biomass and total cell abundance, the trophic state of the estuary was found to be eutrophic during spring due to phytoplankton bloom. Primary productivity level was remarkably high, especially in summer coinciding with high nutrient loading. Pheopigments increased during warm seasons, i.e. summer and fall. Trophic index results indicate that the trophic state varied between mesotrophic and eutrophic in the estuary water body, especially in the upper region. The results suggest that phytoplankton production was regulated by nutrient loading from freshwater whereas biomass was affected by other properties than nutrient loading in the Asan Estuary ecosystem.

Variational Characteristics of Nutrient Loading in Inflow Streams of the Yongdam Reservoir Using Flow-Loading Equation (유량-부하량 관계식을 이용한 용담호 유입하천의 영양염류 유입량 변동특성)

  • Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • The measurements of nutrient and runoff in 4 streams have been performed before and after the rainfall in order to estimate nutrient loads in the Yongdam reservoir. The equations for the relationship between the flow and the loads in each stream could be estimated by the regression analysis. R2 of TN showed the range from 0.95 to 0.99 and the range of R2 for TP was 0.90~0.95 based on the results of the regression analyses. In 2002, total loadings from the upstream to the Yongdam reservoir were TN 1,175 ton/year, TP 69 ton/year. There were 64.9% of TN and 72.3% of TP during 4 months as the flood season. Due to the rainfall, the load of TP was higher than one of TN in Yongdam reservoir.

Prediction of Nutrient Loading from Paddy Fields (II) - Model Application - (논에서의 영양물질 배출량 추정 (II) - 모형의 적용 -)

  • 김현수;정상옥;김진수;오승영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.106-115
    • /
    • 2002
  • The objective of this study was to evaluate the GLEAMS-PADDY model by applying it to estimate nutrients loading from paddy-field areas. Field data from Soro region of Chungbuk province during May to September 1999 were used for model application. Field data collected include the amounts of rainfall, irrigation water, drainage water, ET, and Percolation in hydrology Part. T-N and T-P concentrations in the rain water, irrigation water, ponded water, drainage water and percolated water were measured. The comparisons of observed and simulated water balance components and nutrient concentrations showed reasonably good agreements and the GLEAMS-PADDY model may be used to simulate nutrients loading from paddy fields. Futher research was suggested to include the erosion submodel in the GLEAMS-PADDY model to better simulate the nutrient behavior. In addition, the pesticide submodel also recommended to be included in order to simulate the various pesticide applied in paddy fields.

Nutrient Loads from Agricultural Watersheds using Unit Loading Factor and SWAT Model (원단위법과 SWAT모형을 이용한 농업유역의 영양물질 부하량 추정)

  • Kim, Sang-Min;Park, Seung-Woo;Kang, Moon-Seong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.83-86
    • /
    • 2003
  • To estimate the nutrient loads from an agricultural watershed, SWAT model and Unit Loading Factor method which was proposed by Ministry of Environment were applied for study watershed. The observed hydrologic and water quality data were compared with estimated methods for the Balhan HP#6 study watershed having an area of $3.86km^2$. The estimated nutrient loads were found to be similar values with the observed.

  • PDF

Nutrient production from dairy cattle manure and loading on arable land

  • Won, Seunggun;Shim, Soo-Min;You, Byung-Gu;Choi, Yoon-Seok;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods: Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (${\Delta}P=0$). Results: The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion: As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

A Study on Release Characteristics of Sediment and its Impacts on Water Quality in Daecheong Dam Reservoir (대청댐 저수지 퇴적물의 용출특성과 수질에 미치는 영향에 관한 연구)

  • Lee, Yo-Sang;Lee, Kyeong-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • In order to solve water quality problem of domestic dam reservoir, many projects have been performed in a point of view to restoration of water quality. This study was carried out to evaluate the effect of release from sediment on water quality and release characteristics. Daecheong dam reservoir was investigated for two years, from 1998 to 1999. The nutrient release rates of Daecheong reservoir is less than foreign eutrophic reservoir at anoxic condition. For the evaluation of the effect of nutrient release on water quality, internal and external loading was calculated at Daecheong reservoir. As total phosphorus loading from sediment is calculated 9.3 ton/yr and inflow loading from Daecheong reservoir watershed 118 ton/yr, internal loading shows the portion of 7.88% to external loading. At this study, because sampling point was choosed at the point where much sediment is accumulated, experimental result is more than average release rates. Because Daecheong reservoir shows complete thermal stratification and anoxic condition below 30m from water surface in summer seasons, released phosphorus from sediment can not transfer to epilimnion and eventually resettles. Therefore sediment has insignificant impacts on water quality on Daecheong dam reservoir.

  • PDF

Analysis of Nutrient Dynamics and Development of Model for Estimating Nutrient Loading from Paddy Field

  • Jeon, Ji-Hong;Yoon, Chun-G.;Hwang, Ha-Sun;Jung, Kwang-Wook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.57-69
    • /
    • 2003
  • To evaluate nutrient dynamics with different fertilization in paddy field and develop water quality model, mass balance analysis was performed during growing season of 2001-2002 in field experimental plots irrigated with groundwater. As a result of water balance analysis, most of outflow was surface drainage as about half of total outflow and about 500mm was lost by evapotranspiration. The water budget was well balanced. The runoff from paddy field was influenced by rainfall and forced drain. Especially runoff during early cultural periods more depends on the forced drain. As a result of mass balance analysis, most of nutrient was input by fertilization and lost by plant uptake. Significant amount of nitrogen were supplied by precipitation and input from upper paddy field, comprising 12%∼28% of total inflow. Nutrient loading by surface drainage was occurred showing about 15%∼29% for T-N and 6%∼13% for T-P. The response of rice yield with different fertilization was not significant in this study. Water quality model for paddy field developed using Dirac delta function and continuous source was calibrated and validated to surface water quality monitoring data. It demonstrates good agreement between observed and simulated. The nutrient concentration of surface water at paddy field was significantly influenced by fertilization. During early cultural periods when significant amount of fertilizer was applied, surface drainage from paddy field can cause serious water quality problem. Therefore, reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Shallow irrigation, raising the weir height in diked rice fields, and minimizing forced surface drainage are suggested to reduce surface drainage outflow.

Nutrient production from Korean poultry and loading estimations for cropland

  • Won, Seunggun;Ahmed, Naveed;You, Byung-Gu;Shim, Soomin;Kim, Seung-Su;Ra, Changsix
    • Journal of Animal Science and Technology
    • /
    • v.60 no.2
    • /
    • pp.3.1-3.9
    • /
    • 2018
  • Background: Poultry breeding has increased by 306% in Korea, inevitably increasing the production of manure which may contribute to environmental pollution. The nutrients (NP) in the manure are essential for crop cultivation and soil fertility when applied as compost. Excess nutrients from manure can be accumulated on the land and can lead to eutrophication. Therefore, a nutrient load on the finite land should be calculated. Methods: This study calculates the nutrient production from Korean poultry by investigating 11 broiler and 16 laying hen farms. The broiler manure was composted using deep litter composting while for layer deep litter composting, drying, and simple static pile were in practice. The effect of weight reduction and storing period during composting was checked. Three weight reduction cases of compost were constructed to calculate nutrient loading coefficients (NLCs) using data from; i) farm investigation, ii) theoretical P changes (${\Delta}P=0$), and iii) dry basis. Results: During farm investigation of broiler and layer with deep litter composting, there was a 68 and 21% N loss whereas 77 and 33% P loss was found, respectively. In case of layer composting, a loss of 10-56% N and a 52% P loss was observed. Drying manure increased the P concentrations therefore NLCs calculated using dry basis that showed quite higher reductions (67% N; 53% P). Nutrient loss from farm investigation was much higher than reported by Korean Ministry of Environment (ME). Conclusions: Nutrients in manure are decreased when undergo storing or composting process due to microbial action, drying, and leaching. The nutrient load applied to soil is less than the fresh manure, hence the livestock manure management and conservation of environment would be facilitated.

Prediction of Nitrogen Loading from Forest Stands in Eutrophication of Lake (호소 부영양화에 있어서 산림임반으로부터 질소부하 평가를 위한 조사)

  • Chung, Doug-Young;Lee, Young-Han;Lee, Jin-Ho;Park, Mi-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.430-437
    • /
    • 2010
  • The continuous release of nutrient sources into natural water resource can be a continuing problem in eutrophication, as well as severe reductions in water quality. However, any desirable measure is not developed yet even though so many researches and efforts have been done to solve this problem. Forest as one of troublesome nonpoint sources may contributes most to nutrient loading, but the loading of N and P from forest in order to grasp the eutrophication potential of nonpoint sources has not been evaluated. The nutrient sources from the organic litter accumulated on the surface of forest soils can be a critical factor in continuity of eutrophication of a lake. The decomposition rate of litter can be estimated to predict release of N and P from the forest stand. The loss rate of nitrogen is complicated but depends in part upon the physical matrix of the element. Therefore, long-term nutrient budget and flux estimates at stand would be useful tools in calculating potential nutrient fluxes into the watercourses in a sustainable way. The present investigation can give insight to the actual situation of the eutrophication potentials of forest as the practical nonpoint sources.