• Title/Summary/Keyword: nutrient fluxes

Search Result 34, Processing Time 0.025 seconds

Estimating Benthic Nutrient Fluxes at the Sediment-Water Interface for the Management of Tidal Flats in Gomso and Geunso Bays (곰소만·근소만 갯벌어장 관리를 위한 퇴적물-해수 경계면에서 영양염 플럭스 추정)

  • Jeon, Seung Ryul;Cho, Yoon-Sik;Choi, Yoon-Seok;Kim, Kyung-Tae;Choi, Yong-Hyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.878-884
    • /
    • 2017
  • It is important to understand interactions in the sediment-water environment because nitrate (N) and phosphorus (P) nutrient fluxes released into overlying water can represent a significant fraction of the total nutrient requirement for primary productivity. In this study, we analyzed and estimated benthic nutrient fluxes at the sediment-water interface, investigating environmental conditions in Gomso and Geunso Bays. Also, we compared previously reported nutrient flux data to identify regional differences. As a result, benthic nutrient fluxes in Beopsan were DIN: $6.14mmol\;m^{-2}d^{-1}$ and DIP: $0.32mmol\;m^{-2}d^{-1}$ higher than other survey sites. Sediment COD were $4.0-10.8mg/g{\cdot}dry$, and environmental deterioration was observed due to organic pollution. If no solution is found for tidal flat farm management, problems such as a decrease in aquaculture production will follow. Therefore, long-term monitoring of tidal flat environments should be pursued to enable the sustainable use of biological resources.

Analysis of the Benthic Nutrient Fluxes from Sediments in Agricultural Reservoirs used as Fishing Spots (낚시터로 활용중인 농업용 저수지의 퇴적물 내 영양염류 용출 분석)

  • Joo, Jin Chul;Choi, Sunhwa;Heo, Namjoo;Liu, Zihan;Jeon, Joon Young;Hur, Jun Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.613-625
    • /
    • 2017
  • For two agricultural reservoirs that are rented for fishing spots, benthic nutrient fluxes experiment were performed two times with two sediments from fishing-effective zone and one sediment from fishing-ineffective zone using laboratory core incubation in oxic and anoxic conditions. During benthic nutrient fluxes experiment, the changes in DO, EC, pH, and ORP in the supernatant were not significantly different between fishing-effective zone and fishing-ineffective zone, and were similar to the sediment-hypolimnetic diffused boundary layer in agricultural reservoir. Except for $NO_3{^-}-N$, more benthic nutrient fluxes of $NH_4{^+}-N$, T-P, and $PO{_4}^{3-}-P$ from sediment to hypolimnetic was measured in anoxic than in oxic conditions (p<0.05). As the DO concentration in hypolimnetic decreases, the microorganism-mediated ammonification is promoted, the nitrification is suppressed, and finally the $NH_4{^+}-N$ diffuses out from sediment to hypolimnetic. Also, the diffusion of T-P and $PO{_4}^{3-}-P$ from sediments to hypolimnetic is accelerated through the dissociation of the phosphorus bound to both organic matters and metal hydroxides. The difference in the benthic nutrient diffusive fluxes between fishing-effective zone and fishing-ineffective zone was not statistically significant (p>0.05). Therefore, it was found that fishing activities did not increase the benthic nutrient diffusive fluxes to a statistically significant level. Due to the short fishing activities of 10 years and the rate-limited diffusion of the laboratory core incubation, the contribution of fishing activities on sediment pollution is estimated to be low. No significant correlation was found between the total amount of nutrients in sediment and the benthic nutrient diffusive fluxes in both aerobic and anaerobic conditions. Therefore, nutrients input from various nonpoint sources of watersheds are considered to be a more dominant factor rather than fishing activities in water quality deterioration, and both aeration and water circulation in hypolimnetic were required to suppress the anoxic environment in agricultural reservoirs.

Seasonal and Spatial Variations of Nutrient Fluxes in the Intertidal Flat of Keunso Bay, the Yellow Sea (서해 근소만 갯벌에서 영양염 플럭스의 계절 변화)

  • Kim, Kyung-Hee;Kim, Dong-Seon
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.225-238
    • /
    • 2008
  • In order to investigate the effects of intertidal sediments on the nutrient cycle in coastal environments, the benthic fluxes of ammonium, nitrate, nitrite, phosphate, and silicate at two stations on the intertidal flat of Keunso Bay were determined during each season. The efflux of ammonium was observed at S1 and resulted from the diffusion of remineralized ammonium and acceleration caused by the bioirrigation of macrofauna. The influx of ammonium at S2 was probably due to nitrification in the water column. The influx of nitrate was observed at both stations during all seasons, indicating that the nitrate in the pore water was removed by denitrification. Vigorous bioirrigation led to the efflux of dissolved inorganic nitrogen (DIN) at S1, whereas the influx of DIN at S2 was predominantly caused by denitrification. Contrary to the diffusive and bio-irrigated release of remineralized phosphate from the sediment at S1, the influx of phosphate was observed at S2, which may be attributable to adsorption onto iron oxides in the aerobic sediment layer. Silicate, which is produced by the dissolution of siliceous material, was mostly released from the sediment by molecular diffusion and bioirrigation. However, the influx of silicate was observed at S2 during spring and winter, which was ascribed to adsorption by particulate matter or assimilation by benthic microphytes. The annual fluxes of DIN were 328 mmol $m^{-2}yr^{-1}$ at S1 and -435 mmol $m^{-2}yr^{-1}$ at S2. The annual fluxes of phosphate were negative at both sites (-2.8 mmol $m^{-2}yr^{-1}$ at S1 and -28.9 mmol $m^{-2}yr^{-1}$ at S2), whereas the annual fluxes of silicate were positive at both sites (843 mmol $m^{-2}yr^{-1}$ at S1 and 243 mmol $m^{-2}yr^{-1}$ at S2).

Basal area effects on a short-term nutrient status of litter fall and needle litter decomposition in a Pinus densiflora stand

  • Kim, Choonsig
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.51-60
    • /
    • 2016
  • This study was conducted to examine litter fall, litter decomposition, and a short-term nutrient (C, N, P, K, Ca, and Mg) status for one year at various levels of basal area (21.4, 27.0, 30.8, 37.0, 42.1, and 46.7 m2 ha-1) in approximately 40-yearold red pine (Pinus densiflora S. et Z.) stands in the Hwangmaesan mountain forest in Korea. Monthly fluxes of litter fall components such as needles, broad leaves, branches, bark and total litter fall followed a similar pattern at various levels of basal area. Mean annual needle, bark and total litter fall fluxes were positively correlated with increased basal area (p<0.05), but the woody litter such as branches and cones was not correlated with basal area. Carbon and K concentrations of needle litter were negatively correlated with increased basal area, while nutrient (C, N, P, K, Ca, and Mg) fluxes were positively correlated with the basal area treatments. Remaining mass, N and P concentration and remaining N and P stocks in decomposing needle litter were not affected by the basal area. However, the concentration and stocks remaining of K, Ca, and Mg from decomposing litter were positively correlated with increased basal area during the initial three months of decomposition. The results indicate that basal area has an impact on nutrient cycles through change in litter fall and litter decomposition processes; thus, the dynamics of nutrient cycles based on a stand scale could differ considerably with different levels of basal area in red pine stands.

Variations of Dissolved Inorganic Nutrient Flux through the Seomjin River Estuary (섬진강 하구를 통한 용존무기영양염 유출량 변동)

  • Park, Mi-Ok;Lee, Jae-Seong;Kim, Seong-Soo;Kim, Seong-Gil;Lee, Suk-Mo;Lee, Yong-Woo
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1049-1060
    • /
    • 2014
  • We investigated the spatiotemporal variations of dissolved inorganic nutrients along a saline gradient to estimate nutrient fluxes in the Seomjin River estuary during dry (March 2005, March 2006, March 2007, and March 2008) and rainy seasons (August 2005, July 2006, July 2007, and July 2008). Dissolved inorganic nitrogen concentrations were similar in the endmembers of freshwater for the rainy and dry seasons. In contrast, the concentrations of dissolved inorganic phosphate and silicate in the rainy season were approximately 2-3 times higher than those in the dry season. River discharge was approximately 10 times higher in the rainy season ($212m^3sec^{-1}$) than in the dry season ($21m^3sec^{-1}$). The fluxes of dissolved inorganic nitrogen, phosphate, and silicate were 2.91, 0.004, and 2.51 tons $day^{-1}$ in the dry season and 7.45, 0.421, and 30.5 tons $day^{-1}$ in the rainy season, respectively. Although the range of nutrient concentrations were similar to previous results from investigations in the Seomjin River estuary, the nutrient fluxes were differed according to river discharge for different survey periods.

SOD and Inorganic Nutrient Fluxes from Sediment in the Downstream of the Nagdong River (낙동강 하류 수계에서 저질퇴적층의 SOD와 영양염 용출)

  • Jung, Ha-Young;Cho, Kyung-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.322-335
    • /
    • 2003
  • Nutrient fluxes and sediment oxygen demands (SOD) were measured with intact sediment cores collected from three stations in the downstream of Nagdong River. The sediments were subjected to controlled oxic and hypoxic conditions and temperature gradients (from $10^{\circ}C$ to $30^{\circ}C$) of the overlying waters in laboratory batch system. The effect of temperature and labile layer thickness of the sediment on SOD were examined. $PO_4\;^{3-}$ and $NH_4\;^+$ fluxes were elevated above $20^{\circ}C$ and large mobilities were observed when they were coupled with a hypoxic and high-temperature condition. In the well oxygenated conditions, $PO_4\;^{3-}$ fluxes were negative or negligible but $NH_4\;^+$ fluxes ranged from 1.3 mg N $m^{-2}\;hr^{-1}$ to 2.3 $m^{-2}\;hr^{-1}$. Temperature quotients($Q_{10}$) of $PO_4\;^{3-}$ fluxes were 3.7 ${\sim}$ 7.3 ranges to have the most high values. $PO_4\;^{3-}$ and $NH_4\;^+$ fluxes had the logarithmic increase with temperature, while $NO_3\;^-$ was negatively absorbed to the sediment and linearly correlated with the temperature. $SiO_2$ fluxes showed no difference among oxic and hypoxic conditions and sediment texture. The nutrient fluxes would be closely correlated with pore water chemistry of sediments and activated by the top sediment layer composition such as labile organic matters or algal detritus. The ecological implications of the nutrient fluxes were discussed in terms of sources and sinks of nutrients coupled to algal productions in the Nagdong River.

Long-term Ecological Research Programme in Forestry Research Institute, Korea

  • Oh, Jeong-Soo;Shin, Joon-Hwan;Lim, Jong-Hwan
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.131-134
    • /
    • 2000
  • Forest vegetation in Korea can be largely divided into warm temperate, cool temperate and frigid forest zone. The cool temperate forest zone of them occupies the largest part of the Korean peninsula and it is generally divided into three subdivisions such as northern, central and southern subzone. The Forestry Research Institute established three long-term ecological research sites at Kwangnung Experiment Forest in the central subzone of the cool temperate forest zone, at the Mt. Kyebangsan Forest in the northern subzone of the cool temperate forest zone. and at the Mt. Keumsan Forest in the warm temperate forest zone. The objectives of long-term ecological research in the Forestry Research Institute, Korea are to study long-term changes of the forest ecosystems in energy fluxes, water and nutrient cycling, forest stand structure, biological diversity, to quantify nutrient budgets and fluxes among forest ecosystem compartments and to integrate ecological data with a GIS - assisted model. To achieve the objectives, forest stand dynamics. environmental changes in soil properties, stream water quality, nutrient cycling, air pollution and biological diversity have been investigated and plant phonology as an indicator of climate change has been monitored in the LTER sites.

  • PDF

Estuarine Behavior and Flux of Nutrients in the Seomjin River Estuary (섬진강 하구역에서 영양염의 하구내 거동과 플럭스)

  • 권기영;문창호;이재성;양성렬;박미옥;이필용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.153-163
    • /
    • 2004
  • In order to estimate the nutrient flux of the Seomjin River into the coastal waters of South Sea, and to understand the estuarine reactions during mixing between river water and seawater, we collected surface water along the salinity gradient in the Seomjin River estuary from Mar. 1999 to Apr. 2001. We found that nitrate and silicate were delivered by fluvial input, while phosphate was, supplied from disposed wastes in the Gwangyang Bay. Mean annual flux of dissolved inorganic nitrogen (DIN), phosphate and silicate into the Gwangyang Bay was estimated 10.9 molesㆍsec$^{-1}$(4,820 tonnesㆍyr$^{-1}$), 0.07 molesㆍsec$^{-1}$(68 tonnesㆍyr$^{-1}$), 13.3 molesㆍsec$^{-1}$(11,747 tonnesㆍy$^{-1}$), respectively. An evident removal of phosphate, silicate and ammonium at the mid-salinity zone during the dry season was attributed to the active uptake of phytoplankton, and consequently nutrient flux into the Gwangyang Bay was low. Whereas, during the flood season in summer, conservative or additional distribution of the nutrients was observed in the estuary. As a rsult nutrient flux into the Gwangyang Bay was maintained high. High concentrations of chlorophyll a and the active removal of nutrient during the dry season at the mid-salinity zone suggest that nutrient distribution in the Seomjin River estuary was mainly controlled by biological processes and nutrient fluxes into the Gwangyang Bay might be significantly modified of by the primary production.

Seasonal Variation of Nitrogen Loads and Nitrogen Cycling at Tidal Flat Sediments in Nakdong River Estuary (낙동강 하구 갯벌 퇴적물에서 강을 통한 질산염 유입에 따른 질소순환의 계절 변화)

  • Lee, Ji-Young;Kwon, Ji-Nam;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.120-129
    • /
    • 2012
  • We investigated seasonal variation of sediment-water oxygen and inorganic nitrogen fluxes, and denitrification at tidal flat sediments located in the Nakdong River Estuary from July 2005 to September 2006. Net oxygen fluxes, measured with sediment incubations at in situ temperature, varied from -37.0 to $0.5mmol\;O_2\;m^{-2}\;d^{-1}$. Oxygen fluxes into the sediments from the overlying water increased due to the increased water temperature. Denitrification rate ($4{\sim}2732{\mu}mol\;N\;m^{-2}\;d^{-1}$) in this study was higher compared to the other Korean coast measured with the same method. Denitrification showed the same seasonal variation as oxygen fluxes. Denitrification rate based on $^{15}N$-nitrate showed a strong correlation with nitrate flux into the sediments from the overlying water. Denitrification via "water column supplied nitrate ($D_w$)", calculated from Isotope pairing technique, also correlated well with nitrate flux into the sediments. Nitrate from water column seems to account for seasonal variation of denitrification in Nakdong River Estuary. To understand general patterns and trends of biogeochemical processes of sediments in the Nakdong River Estuary, we categorized biogeochemical fluxes measured in this study according to direction and sizes of fluxes. Type 1(high oxygen and inorganic nitrogen fluxes into the sediments and high denitrification) occurred in summer, whereas Type 2(low oxygen and inorganic nitrogen fluxes into the sediments and low denitrification) occurred in rest of the season. Intertidal flat sediments seem to react sensitively to influence of freshwater from the Nakdong River.