• Title/Summary/Keyword: nutrient element

Search Result 89, Processing Time 0.029 seconds

Growth and Yield Response of Highbush Blueberry 'Duke' to Hydroponic Cultivation (블루베리 '듀크' 품종의 양액재배 시 수체 생장과 수량 반응)

  • Cheon, Mi Geon;Lee, Seo Hyoun;Park, Kyung Mi;Choi, Seong-Tae;Hwang, Yeon Hyeon;Chang, Young Ho;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.244-249
    • /
    • 2021
  • The hydroponic culture for growing 'Duke' blueberry was evaluated in a protective greenhouse provided with similar environmental conditions to the conventional blueberry cultivations. One year old 'Duke' blueberry bushes planted in 180 L containers filled with 130 L peat moss and 40 L pearlite (v/v) were selected for the experiment. A nutrient solution consisted with NO3-N 4.6, NH4-N 3.4, PO4-P 3.3, K 3, Ca 4.6, and Mg 2.2 mmol-1 was supplied to the plants, comparing non-hydroponic treatment (provided with only underground water). Hydroponic culture increased number of shoot per bush by 18% and total shoot length by 24% compared with non-hydroponic culture. Total dry weight of a bush increased in the hydroponic with vigorous root growth 1.4-fold more than the non-hydroponic. Higher concentrations of inorganic elements and organic compounds were found in the hydroponic, indicating active nutrient absorption of the bush. The hydroponic produced high yield similar to adult bush from 4 years old age, maintaining the yield until 8 years old age. The findings of this study indicated that hydroponic cultivation systems will be useful for growing blueberry crop.

Studies on the Growth and Nutrient Uptaking of Flag Leaf and Chaff of Rice Plant in Cold Injury Location II, Influence of Different Nitrogen and Silicate Application on the Nutrient Uptaking of Chaff in Rice Plant (냉해지대의 수도생육과 임, 불임인각의 양분흡수에 관한 연구 제3보 질소와 규산시용량의 차이가 인각의 양분흡수에 미치는 영향)

  • Kim, Y.J.;Choi, S.I.;Ra, J.S.;Lee, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.1
    • /
    • pp.81-88
    • /
    • 1983
  • This experiment was conducted to study about influenced inorganic element contents of flag leaf and chaff with different nitrogen and silicate application in Jinan (sea level 303m). The recommended rate of fertilizer application above N 15kg/10a was poor for dry production increment in cold in July elevation and was demanded increment of silicate. In the elevation of cold in July high rates of nitrogen application produced more incomplete grain and a reduced cold tolerance. These effects were due to over-content of soluble nitrogen within flag leaf and disturbance of uptaking potassium and silicate. On the other hand, the application of silicate could increase yield by promoting resistance to cold- damage. The application of increasing level of nitrogen resulted in increasing the contents of total nitrogen and phosphate in both sterile and fertile glumes. The contents of potassium and calcium were the highest at the level of nitrogen 10 - 15kg/10a, but magnessium was rather high at low nitrogen levels. It is interesting that at any level of nitrogen, over 6% higher silicate contents were noted in the fertile chaff than in the sterile chaff. Application of increasing level of silicate fertilizer decreased total nitrogen contents, but increased the contents of phosphate, potassium. and silicate in the chaff. Increasing rate of silicate content by increasing silicate addition was remarkably higher in the fertile chaff than in the sterile chaff.

  • PDF

Fluoride in soil and plant

  • Hong, Byeong-Deok;Joo, Ri-Na;Lee, Kyo-Suk;Lee, Dong-Sung;Rhie, Ja-Hyun;Min, Se-won;Song, Seung-Geun;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.522-536
    • /
    • 2016
  • Fluorine is unique chemical element which occurs naturally, but is not an essential nutrient for plants. Fluoride toxicity can arise due to excessive fluoride intake from a variety of natural or manmade sources. Fluoride is phytotoxic to most plants. Plants which are sensitive for fluorine exposure even low concentrations of fluorine can cause leave damage and a decline in growth. All vegetation contains some fluoride absorbed from soil and water. The highest levels of F in field-grown vegetables are found up to $40mg\;kg^{-1}$ fresh weight although fluoride is relatively immobile and is not easily leached in soil because most of the fluoride was not readily soluble or exchangeable. Also, high concentrations of fluoride primarily associated with the soil colloid or clay fraction can increase fluoride levels in soil solution, increasing uptake via the plant root. In soils more than 90 percent of the natural fluoride ranging from 20 to $1,000{\mu}g\;g^{-1}$ is insoluble, or tightly bound to soil particles. The excess accumulation of fluorides in vegetation leads to visible leaf injury, damage to fruits, changes in the yield. The amount of fluoride taken up by plants depending on the type of plant, the nature of the soil, and the amount and form of fluoride in the soil should be controlled. Conclusively, fluoride is possible and long-term pollution effects on plant growth through accumulation of the fluoride retained in the soil.

Selenium arrest G1/S phase of cell cycle in LNCaP human prostate cancer cells (사람 전립선암세포주인 LNCaP에서 셀레늄의 G1/S 세포주기억제에 관한 연구)

  • Nam, Jeong-Seok;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.3
    • /
    • pp.267-272
    • /
    • 2009
  • The trace element nutrient selenium discharges its well-known nutritional anti-tumor activity. Converging data from epidemiological, ecological and clinical studies have shown that selenium can decrease the risk for some types of human cancers, especially those of the prostate, lung, and colon. Mechanistic studies have indicated that selenium has many desirable attributes of chemoprevention targeting cancer cells through DNA single strand breaks, the induction of reactive oxygen species. However, there is no reports about the relationship between methylseleninic acid (MSeA), one of methylselenol metabolites and cell cycle arrest in LNCaP human prostate cancer cells. Our data showed that MSeA arrested G1/S pahse of cell cycle arrest and inhibited DNA synthesis in LNCaP cells and those cellular events by MSeA were due to the induction ofp27 protein which is a well-known cyclin-dependent kinase inhibitor. Taken together, cell cycle arrest occurred by MSeA may contribute to the growth-inhibition of prostate cancer cells.

Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement

  • Shin, Wansik;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Kim, Kiyoon;Gopal, Selvakumar;Samaddar, Sandipan;Banerjee, Somak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Though there is an abundant supply of nitrogen in the atmosphere, it cannot be used directly by the biological systems since it has to be combined with the element hydrogen before their incorporation. This process of nitrogen fixation ($N_2$-fixation) may be accomplished either chemically or biologically. Between the two elements, biological nitrogen fixation (BNF) is a microbiological process that converts atmospheric di-nitrogen ($N_2$) into plant-usable form. In this review, the genetics and mechanism of nitrogen fixation including genes responsible for it, their types and role in BNF are discussed in detail. Nitrogen fixation in the different agricultural systems using different methods is discussed to understand the actual rather than the potential $N_2$-fixation procedure. The mechanism by which the diazotrophic bacteria improve plant growth apart from nitrogen fixation such as inhibition of plant ethylene synthesis, improvement of nutrient uptake, stress tolerance enhancement, solubilization of inorganic phosphate and mineralization of organic phosphate is also discussed. Role of diazotrophic bacteria in the enhancement of nitrogen fixation is also dealt with suitable examples. This mini review attempts to address the importance of diazotrophic bacteria in nitrogen fixation and plant growth improvement.

Effect of EM and Amino acid Fertilizer Application on the Growth of 'Seolhyang' Strawberry Mother Plants (EM 및 아미노산액비 시용이 '설향' 딸기 모주의 생육에 미치는 영향)

  • Ann, Seoung-Won;Kim, Young-Chil;Kang, Tae-Ju;Park, Gab-Soon;Lee, Kook-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.55-64
    • /
    • 2015
  • The dry weight of mother plants' leaves had the highest increase rate in both NS (single-use) and NS+EM (mixed-use) mixed with NS 0.8 (customary use). In seafood amino acid fertilizer (SAF) application, the increase rate was highest in SAF solution at a 300-fold dilution. Mother plants' crown diameter, plant height, leaf length, leaf width, petiole length and leaf number showed the greatest growth amount when NS 0.8 (customary use) was mixed to NS (single-use) or NS+EM (mixed-use) solution. The growth was highest in SAF solution diluted 300 folds, but lowest in SAF solution diluted 100 folds. Of all inorganic nutrients, excluding sulfur, total amount of nitrogen, available phosphorus, potassium, calcium and magnesium had the highest increase rate in both NS (single-use) and NS+EM (mixed-use) with the treatment of NS 0.8 (customary use). Total nitrogen, in particular, was increased by 3.1% in NS 0.4, 6.0% in NS 0.8, and 4.5% in NS 0.8 with the application of NS+EM at a 500-fold dilution compared to NS alone. Total nitrogen amount showed the highest increase rate in SAF solution diluted 300 folds. Total nitrogen, available phosphorus, calcium, magnesium and EC in soils applied with culture solutions (NS, NS+EM) had increasing tendencies after fertilizer application. The results were comparable to those of SAF treatment. The increase rate of each inorganic nutrient composition declined in soils applied with NS+EM solution diluted 500 folds compared to NS alone.

Distribution of trace metals in the deep ocean waters of the East Sea (동해심층수 개발해역의 미량금속 분포)

  • Kim, Kyung-Tae;Jang, Si-Hun;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.163-168
    • /
    • 2006
  • In order to develop the deep ocean water, we performed to study the characteristics of vertical distribution of dissolved trace metals(Cd, Co, Cu, Ni, Pb, Zn) from Apr. to Oct., 2005 in the East Sea. Total six sampling sites were selected in Gangwon-Do and Gyeongsanbuk-Do. Accuracy of the analytical procedures was assessed by the SRM(CASS-4) for dissolved metals in seawater. The mean recoveries of CASS-4 ranged from 89.4% for Co to 99.8% for Cd. In this study, the dissolved metal concentrations varied with space, time and element. The metal concentrations showed wide range in the surface. Cd, Ni and Zn showed a nutrient-type profile with surface depletion and enrichment at depth. However, Co, Cu and Pb were irregular in the vertical distribution. All metal concentrations studied in this study are lower than the criteria of Korean drinking water.

  • PDF

Model for Ionic Species Estimation in Soil Solutio (토양용액의 이온조성 추정모델)

  • Kim, Yoo-Hak;Yoon, Jung-Hui;Jung, Beung-Gan;Kim, Min-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.213-236
    • /
    • 2001
  • The ionic composition of soil solution is related to a nutrient uptake by plant. Many models for estimating ionic composition of solution have been developed, and most of them have been used for calculating a content of mineral and ionic species in a geochemical point of view. An approximation model considering both cation and anion in soil solution was developed. Variables such as pH, Eh, EC, cations(K, Ca, Mg. Na, Fe, Mn, Al, $NH_4{^+}$), anions(Si, S, P, CY, $NO_3{^-}$, $HCO_3{^-}$ and chemical equilibria of ionic species in soil solution were input into Excel sheet. The activities of soluble ion, ionpairs and complexes of input element were estimated by Newton-Raphson method using conditional equilibrium constant calculated by Davies equation and special models. Equilibrium contents of insoluble minerals and complexes were also calculated.

  • PDF

The Relation between Fertilization Practices and Functional Metabolites of Crops: A Review

  • Lim, Jung-Eun;Cho, Min-Ji;Yun, Hye-Jin;Ha, Sang-Keun;Lee, Deog-Bae;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.168-180
    • /
    • 2016
  • Various researches on the effects of fertilization levels on functional metabolites in crop have been conducted. This review summarizes the previous studies on the relation between fertilization supply and accumulation of metabolites (phenolics, carotenoids, ascorbic acid and glucosinolates) which function as antioxidants in crop. The accumulation of phenolic compounds is related to the activation of phenylalanine ammonia lyase (PAL) in phenylpropanoid pathway. Most of the previous studies discuss that low nitrogen (N) supply activates PAL, thereby increasing the synthesis of phenolics. Similarly, high N supply leads to a decrease in ascorbic acid because of the shading effect derived from the accelerated vegetative growth under high N level. Unlike the phenolics and ascorbic acid, carotenoids are accumulated with increasing N supply. In this regard, the previous studies explain that N is a main element closely associated with formation of key enzyme for the synthesis of carotenoids. Glucosinolates are generally increased under decreasing N supply and increasing S supply. Although the previous studies show similar trends about the accumulation of metabolites by nutrient level, they also suggest that many other factors including crop types, cultivars, cultural environment (water, temperature, light, etc.) influence the accumulation of functional metabolites in crop.

Studies on the effect of Silicate on nutrients up take using radioisotopes in rice plant. (II) (RI를 이용한 규소시용이 수도의 영양요소 흡수에 미치는 영향)

  • Choon-Johong Ro
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.12
    • /
    • pp.25-29
    • /
    • 1972
  • This experiment was carried out to investigate the role of Silicon accumlated in rice plant under different conditions of light and humidity, using radioisotopes Ca-45, Mn-54, and P-32. This results obtained in are as follows; 1. Light effect is more severe in phosphate uptake by rice plant than is calcium. Amounts of phosphate uptake in light condition is six times more than in dark conditions, while that of calcium is double. 2. Change of relative humidity affects calcium absorption and transport from root to shoot. It seems not to be influenced in phosphate and manganese uptake by relative humidity. 3. More uptake of each element Ca-45, P-32, or Mn-54 was found in the rice plant applied with silicic acid. It is considered that there must be some relationship between silicon content and ion uptake in rice plant. 4. The transport ratio of nutrient from root to shoot shows a specific pattern that calcium is approximately 1.0 manganese 0.5 and phosphate 0.2 respectively.

  • PDF