• Title/Summary/Keyword: nutrient cycle

Search Result 135, Processing Time 0.022 seconds

A Function and Weight Selection of Ecosystem Service Function for the Eco-friendly Protected Horticulture Complex in Agricultural Landscape (시설원예단지의 친환경적 조성을 위한 생태계서비스 기능 및 가중치 산정)

  • SON, Jinkwan;KONG, Minjae;SHIN, Yukung;YUN, Sungwook;KANG, Donghyeon;Park, Minjung;LEE, Siyoung
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.533-541
    • /
    • 2017
  • Agricultural landscape has many ecosystem service functions. However, the development of the horticulture complex has no consideration for environmental conservation. Therefore, we analyzed the priorities of ecosystem service functions required for the composition. The study was conducted in three stages. As a result of the first survey, 17 functions were selected to be improved. In the second survey, 12 functions were selected excluding 5 functions. Finally, 1. Measures for water purification, 2. Groundwater recharge plan, 3. Surface water storage space, 4. Flood control measures, 5. Vegetation diversity space, 6. Carbon emission reduction plan, 7. Aquatic insect habitat space, 8. Amphibian reptiles 9. Landscape and Waste Management, 10. Bird Species Space, 11. Heat Island Mitigation Plan, 12. Experience / Ecological Education Plan. We proposed the structure, capacity, flow rate, arrangement and form of the water treatment facility to improve water quality by improving the function. We proposed a reservoir space of 7-10% for groundwater recharge. The development of reservoir and storage facilities suitable for the Korean situation is suggested for the surface water storage and flood control measures. And proposed to secure a green space for the climate cycle. Proposed habitat and nutrient discharge management for biodiversity. We propose green area development and wetland development to improve the landscape, and put into the facilities for experiential education. The results of the research can be utilized for the development and improvement of the horticultural complex.

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Analysis of Water Quality Improvement of Ceratophyllum demersum under Laboratory Condition - by Nutrients Removal Efficiency (실험실 조건에서 붕어마름의 수질개선 효과 분석 - 영양염류 제거 효율을 중심으로)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Joo, Won Jung;Ahn, Hosang;Lee, Saeromi;Oh, Ju Hyun;Song, Ho Myeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.283-288
    • /
    • 2013
  • To evaluate the ability of the submerged plant, Ceratophyllum demersum's (C. demersum) to remove nutrients and to inhibit growth of cyanobacteria, a total of 6 mesocosms were conducted in a batch reactor for 9 days. From the 84 hr of the experiment, C. demersum was stabilized and showed daily cycle trends according to changes in pH and DO levels. The concentration of nutrients, $NH_3{^+}$, $NO_3{^-}$ and $PO_4{^3}$ continuously decreased until 9 days of the experiment, with the rapid decrease in nutrient concentration for the first 24 hours. High correlation coefficient ($r^2{\geq}0.96$, p<0.001) between the amount of C. demersum's biomass per unit area and the nutrients removal level were derived, and greater C. demersum's biomass per unit area showed higher removal efficiency of nutrients. However, there were differences in the C. demersum's activity level between batch reactors with higher and similar density of the C. demersum, but nonetheless water purification effect appears to have a significant influence due to attached algae and microorganisms. The growth rate of harmful cyanobacteria, Microcystis aeruginosa (M. aeruginosa) with C. demersum's density of 2,500 g $fw/m^2$ (100% of cover degree) was 0.31 /day, compared to the growth rate of 0.47 /day for the control group (0% of cover degree). In terms of number of cells, the control group had 1.7 times higher number of cells than the experimental group, proving that C. demersum has the ability to inhibit the growth of harmful cyanobacteria.

Arbuscular Mycorrhizal Fungus Inoculation Effect on Korean Ash Tree Seedlings Differs Depending upon Fungal Species and Soil Conditions (아버스큘 균근균(菌根菌) 접종(接種)이 균종(菌種)과 토양상태(土壤狀態)에 따라 물푸레나무 묘목(苗木)의 생장(生長)에 미치는 영향(影響))

  • Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.466-475
    • /
    • 1997
  • I examined arbuscular mycorrhizal(AM) fungus inoculation effects on the seedling growth of Korean ash tree(Fraxinus rhynchophylla Hance), which distributes in fertile mesic soils, under a seven-day watering cycle of water stress and compost-added fertile conditions. Three Korea-native AM fungi were inoculated : an unidentified Glomus species, Gigaspora margarita Becker & Hall and Scutellospora heterogama(Nicol. & Gerd) Walker & Sanders from disturbed forest soils. The effect of AM fungus inoculation on the seedling varied depending upon fungal species and soil conditions. AM formation was 27 to 65% by the Glomus without forming spores, 47 to 74% with about 10 spores per 20g soil by G. margarita and about 65% with 35 spores by S. heterogama. The soil conditions did not affect either AM or spore formation. The Glomus inoculation increased shoot N and P concentrations, but did not affect seedling growth. G. margarita increased shoot N and P, irrespective of soil conditions, in general, but S. heterogama increased N under water stress and Pin the control soil only. These two fungi significantly increased seedling growth in both control and water stress soils. Compost addition increased the growth of non-mycorrhizal seedlings and offset AM fungus inoculation effects. The relative field mycorrhizal dependency(RFMD) of the seedlings was significant only in control and water stress soils by over 40% in G. margarita or S. heterogama AM plants. Under water stress RFMD was the most evident in S. heterogama AM plants. I conclude that some AM fungi such as G, margarita and S. heterogama can broaden the niche of Korean ash seedlings to a water stress or nutrient poor site but less likely to more fertile sites.

  • PDF

Effect of Eddy on the Cycle of 210Po and 234 in the central Region of Korean East Sea (동해 중부해역에서 210Po과 234Th의 순환에 대한 소용돌이의 영향)

  • YANG, HAN SOEB;KIM, SOUNG SOO;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.279-287
    • /
    • 1995
  • The vertical profiles of natural 210Pb, 210Po and 234Th activities were measured for the upper 100 m of water column at three stations in the middle region of the Korean East Sea during May 1992. And the distribution of these radionuclides was discussed associated with the formation of warm eddy or water mass. The main thermocline was maintained between the depth of 50 and 100 m at the southern station (Sta. A1), and between the depth of 10 to 50 m at the coastal station of Sockcho (Sta. B10). Contrastingly, a main thermocline at Sta. A10, which locates near the center of warm eddy, was observed below 230 m depth. Between 50 and 220 m depth of Sta. A10 is there a relatively homogeneous water mass of 10.1${\pm}$0.5$^{\circ}C$, which is significantly higher in temperature and lower in nutrient than the other two stations. It seems to be due to sinking of the warm surface water in which nutrients were completely consumed. Both 210Pb and 210Po show the highest concentration at Sta. A1 and the lowest at Sta. B10 among the three stations. Also, the 210Pb activity is generally higher in the upper layer than in the lower layer, while 210Po activity represents the reversed pattern at all three stations. At Sta. A1 and Sta. B10, the activities of 210Po relative to its parent 210Pb were deficient in the water column above the main thermocline, but were excess below the thermocline. However, the station near the center of warm eddy(Sta. A10), shows no excess of 210Po in the depths below 50 m, although its defficiency is found in the upper layer like the other stations. At Sta. A1 and b10. 234Th activities are slightly lower in the surface mixed layer than in the deeper region However, at Sta. A10, 234Th activity in the upper 30 m is higher than below 50 m or in the same depth of the other stations, probably because of the high concentration of particulate matter. The residence time of 210Po in the surface mixed layer at Sta. A10 is 0.4 year, much shorter than at the other two stations(about one year). Above 100 m depth, the residence times of 234Th range from 18 to 30 other two stations(about on year). Above 100 m depth, the residence times of 234Th range from 18 to 30 days at all stations, without significant regional variation. The percentages of recycled 210Po within the thermocline are 39% and 92% at Sta. A1 and Sta. B10, respectively. Much higher value at Sta. B10 may be due to a thin thickness of the mixed layer as well as the slower recycling rate of 210Po in the main thermocline.

  • PDF