• Title/Summary/Keyword: nutrient accumulation

Search Result 239, Processing Time 0.022 seconds

Studies on the Suitable Paddy Soil for Application of Rice Straw (볏짚시용(施用)을 위한 답토양(畓土壤) 적지시험(適地試驗)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu;Ahn, Sang-Bae;Park, Keun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.101-107
    • /
    • 1984
  • The suitable paddy soil for application of rice straw under well to moderately well drained soil, the yield and yield components were pronounced more than poorly drained soil. Based on laboratory experiment, application of rice straw promoted the decrease of oxidation-reduction potential in well to moderately well drained soil. This results seems to be enhanced the release of some mineral nutrients such as calcium, potassium, silicon, and increases of availability of soil phosphorus. This explains reason why soil condition became more favorable for the increases of mineral nutrient in rice plant. On the contrary, poorly drained soils, became readily reduced even without application or rice straw, when soil wat submerged. Application of rice straw did not promoted the decrease of oxidation-reduction potential as much as in well drained soil. It was suggested that in this type of soil series, the release of mineral nutrients and the additional increase of available soil phosphorus did not proceed well. It was also suggested that the retardation of root development owing to accumulation of toxic substances such as organic acid, hydrogen sulfide or some other reducing substances formed by the application of rice straw in poorly drained soil series might be considered. In fact, the effect of rice straw on the yield of brown rice became lower.

  • PDF

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Backgrounding steers on temperate grasses mixed with vetch and/or using energy supplementation

  • de Oliveira Lazzarotto, Eduardo Felipe Colerauz;de Menezes, Luis Fernando Glasenapp;Paris, Wagner;Molinete, Marcos Luis;Schmitz, Gean Rodrigo;Baraviera, Jose Henrique Ignacio;Farenzena, Roberta;de Paula, Adalberto Luiz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.800-807
    • /
    • 2019
  • Objective: The aim was to evaluate backgrounding beef steers on oat + ryegrass pastures mixed with vetch and/or using energy supplementation. Methods: A randomized block design with three treatments and three replications was used. The treatments were: grass + supplement (oat + ryegrass + supplementation), legume + supplement (oat + ryegrass + vetch + supplementation) and grass + legume (oat + ryegrass + vetch). A continuous grazing system with a variable stocking rate was used. Twenty-seven intact crossbred steers (1/4 Marchigiana, 1/4 Aberdeen Angus and 2/4 Nellore) aged 7 months old and average weight of 190 kg were used. Steers were supplemented at 1% of the body weight of ground corn. The experiment lasted 84 days, between May and August 2014. Behavioral assessments were performed two times per experimental period, for 24 hours. Results: The forage mass was different between treatments, being greater for steers fed without legume. The accumulation rate, forage allowance, and stocking rate did not differ between treatments due to the adequate adjustment of forage allowance. The final weight of animals, as well as the dry matter intake (kg/d), did not differ between treatments. However, forage intake was higher for non-supplemented animals in relation to supplemented steers. Supplement intake did not alter the total digestible nutrient intake due to pasture quality. Animals fed grass + supplement had higher live weight gain per area than those fed grass + legume. Animals without supplementation spent more time in grazing. Conclusion: Feeding behavior was not altered by mixing with vetch or supplementation. Non-supplemented animals started the grazing peak earlier and spent more time in grazing than those supplemented; however, the average daily gain was similar between treatments. The live weight gain per hectare was 47% higher in pastures in which the animals received supplementation compared with those mixed with vetch, a consequence of the substitutive effect.

Dietary effect of energy levels on growth performance and carcass characteristics of White Pekin duck over 21 days

  • Jun Seon, Hong;Jaehong, Yoo;Hyun Min, Cho;Samiru Sudharaka, Wickramasuriya;Shemil Priyan, Macelline;Jung Min, Heo
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.471-480
    • /
    • 2022
  • This experiment was conducted to determine the maximum dietary energy levels on growth performance and carcass characteristics of White Pekin duck. the Six dietary treatments were formulated based on their apparent metabolizable energy (AME) concentrations from 2,700 to 3,200 kcal/kg with a 100 kcal/kg gap to evaluate the accurate dietary AME requirement to address current knowledge and further issues for fulfilling the genetic potential of meat-type white Pekin ducklings. A total of 432 one-day-old male White Pekin ducklings were randomly allocated into one of six dietary treatments with six replicates (12 birds per pen). The diets were formulated as corn-soybean meal-based diets to meet or exceed the Nutrient Requirement of Poultry specification for meat-type ducks. Growth performance indices (i.e. average daily gain [ADG], average daily feed intake, feed conversion ratio) were measured weekly. Medium body weight (BW) ducklings from each pen were sacrificed to analyze the carcass traits and abdominal fat content on day 21. Obtained data were analyzed to estimate significant effect using the one-way ANOVA of IBM SPSS Statistics (Version, 25). If the p-value of the results were significant, differences in means among treatments were separated by Tukey's post hoc test. Significant differences were then analyzed with a linear and quadratic broken model to estimate the accurate concentration of AME. Ducklings fed higher dietary AME diets increased (p < 0.05) BW, ADG. Ducklings fed higher AME than 2,900 kcal/kg diets increased abdominal fat accumulation and leg meat portion. The estimated requirement by linear plateau method showed from 3,000.00 kcal/kg to 3,173.03 kcal/kg whereas the requirement by quadratic plateau method indicated from 3,100.00 kcal/kg to 3,306.26 kcal/kg. Collectively, estimated dietary requirements exhibit diverse results based on the measured traits and analysis methods. All the estimated requirements in this experiment present higher than previous research, the maximum requirement for the next diet formulation should be selected by the purpose of the diet.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperature Forest Zone of Korea (II) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態學的) 연구(硏究) (II))

  • Yim, Kyong Bin;Lee, Kyong Jae;Park, In Hyeop
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.49-59
    • /
    • 1981
  • In order to elucidate the process of plant succession of the Japanese red pine forests caused by pine gall midge, Thecodoplosis japonensis, in the area of Chungbuk and Kyongbuk, 12 study plots, 4 plots from each three districts, were set up. Districts A (Cheongwon)not attacked by this insect, as the check, District B(Gumi) in which the insect outbreak occured 5 years ago, and District C(Yeongdong)in which the insect outbreak occured 10 years ago, were sampled. The surveyed were some environmental factors, the number of woody plants, relative density, relative dominance values, species composition of plots by layer(upper, middle and ground), importance values, species diversity, similarity and dissimilarity index, etc. The results obtained are summarized as follows: The accumulation of litter on the ground was increased with the lengthening the insect damage duration. Through the crown opening and litter accumulation, the light intensity, temperature condition and soil moisture and nutrient content might be altered. According to the changes of species composition were forced. In general, the Genus Quercus, as a compensation species, has sprung up. The relative importance values for Q.aliena, Q.serrata, and Q.variabilis were significantly increased in the insect infested forests. 2. the stand structure and species composition of the insect attacked forest about 5 years later after the outbreak become complex and diverse. However, since this time, the simplicity of these regards become restored up to 10 years after the outbreak. 3. As the synthetic analysis of plant succession process, the relative values calculated from the relative density and the relative dominance values shown the dominant status of Genus Quercus in the heavily damaged forests. In addition, Genus Rhododendron and Genus Lespedeza with higher frequency become the ground vegetation components. They were gradually increased along the time elapsing after the insect out-break. 4. The differences in connection with the soil moisture contents, the organic matter contents which might give some influences to the vegetation change were hardly recognizable statistically among the studied plots by three district groups. We estimated that the annual mean precipitation and the annual mean temperature did not operated any meaningful effects on the vegetation alteration among plots between districts.

  • PDF

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Tree Growth and Nutritional Changes in Senescing Leaves of 'Fuyu' Persimmon as Affected by Different Nitrogen Rates during Summer (여름 질소 시비량에 따른 '부유' 감나무의 생장과 노화 중 잎의 양분 변화)

  • Choi, Seong-Tae;Park, Doo-Sang;Ahn, Gwang-Hwan;Kim, Sung-Chul;Choi, Tae-Min
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.706-713
    • /
    • 2013
  • With pot-grown 4-year-old 'Fuyu' persimmon trees, this study evaluated the effect of different nitrogen (N) rates during summer on fruit characteristics, changes of leaf nutrients after harvest, reserve accumulation, and early growth the following year. A total of 0, 36 g N in June, and 72 g N in June and July was fertigated to each tree using urea solution. All the fruits were harvested on Nov. 3. Although not significant, fruits were larger for the 36 g and 72 g N than the 0 g N. Fruits for the 0 g N, having lower N concentration, were softer and had a better coloration and higher soluble solids, indicating that they matured earlier. SPAD value on Nov. 3 was 19.2 for the 0 g N and 54.9 for the 72 g N, and then the values linearly decreased in all the treatments by Nov. 14, exhibiting rapid leaf senescence. Specific leaf weight, being the lowest for the 0 g N, also gradually decreased during this period. Increasing N level significantly increased cross-sectional area of the trunk. Leaf N concentration on Nov. 3 was 0.87% for the 0 g N, whereas it was 1.18 and 1.52% for the 36 g and 72 g N, respectively. The N fertigation tended to increase leaf concentrations of soluble sugars, starch, and amino acids. Contents of N, P, K, soluble sugars, starch, and amino acids per unit leaf area gradually decreased in all the treatments during the 11 days after harvest, and the extent of the decrease was the lowest for the 0 g N. On the other hand, those of Ca, Mg, and protein did not consistently change during this period. The N fertigation resulted in higher concentrations of N in dormant shoots on Nov. 14, and although not great, it also increased soluble sugars, starch, amino acids, and protein. Clear differences were found in number of flower buds per one-year-old branch and total shoot length per tree the following year. The 72 g N trees had 5.6-fold more flower buds and 1.9-fold more shoot length, compared with those of 0 g N trees. However, it was noted that tree growth the following year was not significantly different between the 36 g and 72 g N the previous year. It was concluded that N rate during summer should be adjusted with considering the changes of fruit maturation, mobilization of leaf nutrients, and reserve accumulation.

Status and Change in Chemical Properties of Polytunnel Soil in Korea from 2000 to 2012

  • Kang, Seong Soo;Roh, Ahn Sung;Choi, Seung Chul;Kim, Young Sang;Kim, Hyun Ju;Choi, Moon Tae;Ahn, Byoung Gu;Kim, Hee Kwon;Park, Sang Jo;Lee, Young Han;Yang, Sang Ho;Ryu, Jong Soo;Sohn, Yeon Gyu;Kim, Myeong Sook;Kong, Myung Suk;Lee, Chang Hoon;Lee, Deog Bae;Kim, Yoo Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.641-646
    • /
    • 2013
  • Chemical properties of agricultural soils in Korea have been investigated at four-year interval in order of paddy, polytunnel, upland, and orchard soils since 1999; polytunnel soils were investigated over the whole country in 2000, 2004, 2008, and 2012. Polytunnel soils were taken from the surface (0-15 cm) and subsurface (15-30 cm) at 2,651, 1,274, 1,374 and 1,374 sites in all provinces of South Korea. One hundred sampling sites located in more than 400 m altitude were additionally investigated in 2008 and 2012. Average of soil chemical properties in 2012 except Jeju province were 6.6 for pH, 3.2 dS $m^{-1}$ for EC, 37 g $kg^{-1}$ for organic matter (OM), 1,049 mg $kg^{-1}$ for available (Avail.) phosphate, 1.58 $cmol_c\;kg^{-1}$ for exchangeable (Exch.) K, 10.6 $cmol_c\;kg^{-1}$ for Exch. Ca, and 3.3 $cmol_c\;kg^{-1}$ for Exch. Mg. Except pH, averages of all chemical properties exceeded the upper limit of optimal range. The median values except pH showed a lower value than the averages. The pH, OM and Exch. Ca had slightly increased from 6.3 to 6.6, from 34 to 37 g $kg^{-1}$, and from 7.7 in 2000 to 10.6 $cmol_c\;kg^{-1}$ in 2012, respectively. The order of sample ratios exceeding the optimal range were Avail. $P_2O_5$ (83%) > Exch. Ca (80%) > Exch. K (70%) > Exch. Mg (65%) > EC (55%) > OM (48%) > pH (29%) in 2012. The order of sample ratios below the optimal range was OM (25%) > Exch. K (25%) > pH (20%), Exch. Mg and Avail. $P_2O_5$ (9%) > Exch. Ca (6%) in 2012. The excessive proportion of pH, Exch. Ca, Exch. Mg and OM slightly increased, while the insufficient proportion of those decreased. Approximately 55% of polytunnel soils exceeding EC 2 dS $m^{-1}$ was evaluated with salt accumulated soils having the risk of growth disorder of crops. Nutrient contents in polytunnel soils in Korea showed high level especially Avail. $P_2O_5$ and Exch. cations. Therefore, recommended fertilization based on soil testing or plant testing is needed for soil nutrient management.

Effect of Fertilizer and Organic Matter Level on Marketable Tuber Production in Chinese Yam (Dioscorea opposita) (마(산약) 생산을 위한 시비법 개선연구)

  • Shin, Jong-Hee;Kim, Sang-Kuk;Kang, Dong-Kyoon;Park, Sang-Zo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.144-150
    • /
    • 2014
  • Yams (Dioscorea spp), which are edible or medicinal tuber crops, are a important crop in South Korea. Yams require a high level of soil fertility. The various cultural practices such as fertilizing and plowing were tested for marketable tuber production in Chinese yam (Dioscorea opposita). Tuber yield was also affected by organic matters in soil. Application higher level of organic matters result in increased each tuber weight and tuber yield per unit area. The nutrient absorption quantity of the plant such as nitrogen, phosphoric acid, calcium and potassium was increased from 100~120 days after planting, which time to begin tuber enlargement. The tuber yield was increased when the fertilization increased in quantity. Total yield and marketable ratio were the highest in 31~32 kg/10a of nitrogen fertilizer. From above result, income become larger with increase of marketable yield and quality improvement at 63% (27 kg/10a) level of conventional N fertilization (43 kg/10a). The tuber yield was not significantly different between with in various application level of potash fertilizer. Tuber size and weight decreased accordingly to decreased fertilizing level, so the rates of small tubers increased greatly at cultivation without chemical fertilizer. In considering the accumulation rates of allantoin in Chinese yam tubers, the apt harvest season was after October. The allantoin quantity of it was not influenced with nitrogen fertilizing. Moreover it was advantageous with decrease of chemical fertilizer and appropriate fertilizing in soil environment protection. Commercial tuber's number and yield were increased in trenching before planting with trencher compared with rotavating with tractor.