• Title/Summary/Keyword: nut-screw mechanism

Search Result 7, Processing Time 0.027 seconds

A Structural Analysis and Safety Evaluation of a Loose-proof Lock-Nut Structure (풀림방지 로크너트의 구조해석 및 안전성 평가)

  • Park, Sang Kun
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.20-24
    • /
    • 2012
  • In this paper, we perform a ANSYS simulation of assembly structure composed of three parts, bolt, nut, and coil spring, under the loading of a screw torque 640~800 ($N{\cdot}m$) derived from the given bolt tensile strength 10.9, which allows us to investigate a lock-nut mechanism for the prevention of bolt-loosening after three parts are fastened. And also we investigate the safety factor of each component with effective stress distribution obtained from the simulation, which enables us to estimate the structural safety of a new lock-nut structure. Both simulation and investigation shown in this paper will contribute to the development of a new lock nut structure.

  • PDF

Application of discrete wavelet transform to prediction of ram stuck phenomena

  • Byun, Seung-Hyun;Cho, Byung-Hak;Shin, Chang-Hoon;Park, Joon-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1445-1449
    • /
    • 2005
  • The ram assembly is important equipment in fueling machine of PHWR(Pressurized Heavy Water Reactor) plant where fuel replacement is possible while the plant is in service. Troubles in the ram assembly can cause lots of difficulties in power plant operation. The ram assembly is typically composed of the B-ram, the L-Ram and the C-Ram. The B-ram is focused in this paper because it plays the most important role in the ram assembly. Among the ram fault phenomena, ram stuck phenomena are the most frequent cases in the B-ram, which has a ball screw mechanism driven by a hydraulic motor. Ram stuck phenomena are due to ball wear and damage in ball nut that increase in proportion to the number of fuel replacement. It is required to predict ram stuck phenomena before they occur. In this paper, a method is proposed for predicting ram stuck phenomena using a discrete wavelet transform. The discrete wavelet transform provides information on both the time and frequency characteristics of the input signals. The proposed method uses the frequency bandwidths of coefficients of discrete wavelet decompositions and detail coefficients of discrete wavelet transform to predict ram stuck phenomena. The signal used in this paper is a torque-related signal such as a hydraulic service outlet pressure signal in a hydraulic driving system or a current signal in a DC motor driving system. Finally, the validity of the proposed method is shown via experiment using ball nut characteristic test equipment that simulates ram stuck phenomena due to increased ball friction in ball nut.

  • PDF

Development of High Speed type Automatic Alignment System for Spring Wing Toggle (스프링 윙 토글의 고속 자동화 조립 시스템 개발)

  • 강재훈;송준엽;이승우;윤종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.483-486
    • /
    • 2002
  • Toggle bolt is mechanical device constructed with toggle spring wing toggle and machine screw, and defined as an expansive bolt consisting of a nut with flanged wings which are pressed to the bolt and, after insertion in a thin or hollow wall, spread open through spring pressure, thus anchoring it to the wall. And spring wing toggle is aligned with two wings, spring and nut manually in domestic manufacturing line. Then it is regarded as major problem for exports increasement to make cost down in the view of total manufacturing process. Accordingly in this study, high speed type automatic alignment mechanism is guided for spring wing bolt, and exclusive alignment dies and some special additional units are designed and manufactured.

  • PDF

Design of an Economic Service Robot Hand Based on Biomimetics and TRIZ (생체 모방학과 트리즈를 이용한 보급형 서비스 로봇 핸드의 설계)

  • Ko, Hun-Keon;Cho, Chang-Hee;Kim, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1741-1747
    • /
    • 2010
  • This work presents a study on the design of an economic service robot hand for tele-presence manipulators. The conceptual design of new robot hand is derived from biomimetics approach. Guided by the analysis of human arm' musculoskeletal structure, the fingers are actuated by cables and actuators in the forearm. High tension in the cables is achieved by screw-nut mechanism driven by DC motors. A set of combination springs is incorporated in each of the screw-nut mechanism for easy control of gripping force. The first prototype revealed difficulties with finger control and coupling problem between gripping force and wrist movement. The solutions to these problems have been derived from the contradiction analysis of TRIZ. The second design has been verified by tests on various objects with different weight and shape for full range of wrist motion.

Mobility Improvement of a Jumping Robot using Conical Spring with Variable Length Endtip (가변길이 엔드팁을 갖는 원추형 스프링을 이용한 도약로봇의 이동성 향상)

  • Kim, Ki-Seok;Kim, Byeong-Sang;Song, Jae-Bok;Yim, Chung-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1108-1114
    • /
    • 2009
  • Mobility is one of the most important features for a guard robot since it should be operated in rough places. A wheel-based mobile robot capable of jumping is an appropriate structure for a guard robot because it can easily satisfy the requirements for small guard robots. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes a small robot equipped with the jumping mechanism based on the conical spring with the variable length endtip. The variable length endtip enables the independent control of the jump force and jump angle which are related to the jump height and jump distance, respectively. Various experiments demonstrated that the proposed jumping mechanism can provide the independent control of jump force and jump angle, and improve the mobility of a small robot to overcome an obstacle. Furthermore, a combination of the jumping mechanism and the PSD sensor to measure the distance to the step enable the jumping robot to autonomously climb stairs.

Design of a 6-DOF Parallel Haptic Rand Controller Consisting of 5-Bar Linkages and Gimbal Mechanisms (5절링크와 짐벌기구로 구성된 병렬형 6자유도 햅틱 핸드컨트롤러의 설계)

  • Ryu, Dong-Seok;Sohn, Won-Sun;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • A haptic hand controller (HHC) operated by the user’s hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. In this paper, a 3-DOF hand controller is first presented, in which all the actuators are mounted on the fixed base by combining a 5-bar linkage and a gimbal mechanism. The 6-DOF HHC is then designed by connecting these two 3-DOF devices through a handle which consists of a screw and nut. Analysis using performance index is carried out to determine the dimensions of the device. The HHC control system consists of the high-level controller for kinematic and static analysis and the low-level controller for position sensing and motor control. The HHC used as a user interface to control the mobile robot in the virtual environment is given as a simple application.

Experiments on Robust Nonlinear Control for Brush Contact Force Estimation (연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.