• Title/Summary/Keyword: numerical testing

Search Result 850, Processing Time 0.025 seconds

The Bayesian Inference for Software Reliability Models Based on NHPP (NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 베이지안 추론에 관한 연구)

  • Lee, Sang-Sik;Kim, Hui-Cheol;Song, Yeong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.389-398
    • /
    • 2002
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process(NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. Actual software failure data are compared with several model on the constant reflecting the quality of testing. The performance measures and parametric inferences of the suggested models using Rayleigh distribution and Laplace distribution are discussed. The results of the suggested models are applied to real software failure data and compared with Goel model. Tools of parameter point inference and 95% credible intereval was used method of Gibbs sampling. In this paper, model selection using the sum of the squared errors was employed. The numerical example by NTDS data was illustrated.

Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer (Phased Array트랜스듀서에 있어서 구성 압전소자수의 변화에 따른 초음파 빔 전파 특성의 수치 해석)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.207-216
    • /
    • 1999
  • A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased.

  • PDF

Experimental and Numerical Validation of the Technique for Concrete Cure Monitoring Using Piezoelectric Admittance Measurements (어드미턴스 기반 콘크리트 경화 모니터링의 실험 및 수치적 검증)

  • Kim, Wan Cheol;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.217-224
    • /
    • 2016
  • This paper presents a new technique for monitoring the concrete curing process using embedded piezoelectric transducers via admittance measurements. When a piezoelectric transducer is embedded in a structure, the electrical impedance (admittance) of the transducer is coupled with the mechanical impedance of the host structure, which allows monitoring of the structural condition. In this study, the admittance signatures are used for monitoring the concrete curing process. This new method is based on an admittance-based sensor diagnostic process, in which the capacitance values of the piezoelectric transducers are dependent on the strength of the host structure. We numerically and experimentally investigated the variations in capacitive value during the curing process. The results demonstrate that there is a clear relationship between the concrete curing status and the slope, this indicates that the proposed method could be efficiently used for monitoring the curing status of a concrete structure.

Review of Hazard Test of Combustion Gas and Exhaust Temperature of Acrylic Fire Protection Paint (아크릴계 내화도료 연소가스의 유해성 평가와 배기온도에 대한 고찰)

  • Jeon, Soo-Min;Kim, Jae-Jun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.1-6
    • /
    • 2017
  • A fire resistance certification needs to be obtained before fire protection paint can be used in Korea. In the case of paint, the tests for certification are fire, gas hazard and bond strength. According to the hazard test standard of combustion gas, 16 mice are sacrificed every test. Therefore, there are ethical problems for the experimenter and legal problems for the laboratory. Accordingly, many alternatives are being assessed, such as combustion gas analysis, but they have not replaced animal testing yet. With gas hazard testing, the exhaust gas temperature can be measured. The property of the initial reaction of a specific fire paint can be characterized by this temperature. The purpose of this study was to consider the improvement point for a gas hazard test through comparative analysis of the exhaust temperature and the time of death of the mice.

Estimation of fracture toughness of cast steel container from Charpy impact test data

  • Bellahcenea, Tassadit;Aberkane, Meziane
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.639-648
    • /
    • 2017
  • Fracture energy values KV have been measured on cast steel, used in the container manufacture, by instrumented Charpy impact testing. This material has a large ductility on the upper transition region at $+20^{\circ}C$ and a ductile tearing with an expended plasticity before a brittle fracture on the lower transition region at $-20^{\circ}C$. To assess the fracture toughness of this material we use, the $K_{IC}$-KV correlations to measure the critical stress intensity factor $K_{IC}$ on the lower transition region and the dynamic force - displacement curves to measure the critical fracture toughness $J{\rho}_C$, the essential work of fracture ${\Gamma}_e$ on the upper transition region. It is found, using the $K_{IC}$-KV correlations, that the critical stress intensity factor $K_{IC}$ remains significant, on the lower transition region, which indicating that our testing material preserves his ductility at low temperature and it is apt to be used as a container's material. It is, also, found that the $J_{\rho}-{\rho}$ energetic criterion, used on the upper transition region, gives a good evaluation of the fracture toughness closest to those found in the literature. Finally, we show, by using the ${\Gamma}_e-K_{IC}$ relation, on the lower transition region, that the essential work of fracture is not suitable for the toughness measurement because the strong scatter of the experimental data. To complete this study by a numerical approach we used the ANSYS code to determine the critical fracture toughness $J_{ANSYS}$ on the upper transition region.

A Study on the Characteristics of Chamdrilling for SCM415 Steel (SCM415강에 대한 캄드릴링 특성연구)

  • Kim, Jin-su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.27-34
    • /
    • 2021
  • This study analyzes machining characteristics and presents optimal cutting conditions by measuring the surface roughness, dimensional accuracy, and dimension straightness based on the feed rate after processing the inner diameter hall of SCM415 steel using an automatic CNC(Computerized Numerical Control) lathe. The testing material was cut using an 11.8 mm-diameter Chamdrill after mounting the 32 mm-diameter round bar on an automatic CNC lathe. The cut depth was set at 3 mm, and the cutting speed was fixed at 1500 rpm. The surface roughness, dimensional accuracy, and dimension straightness of 15 testings were measured by changing the feed rate to 0.05, 0.1, and 0.15 mm/rev, respectively. It was difficult to process more than 15 tests during the maching due to noise or break. Additionally, the optimum cutting of SCM415 steel showed excellent surface roughness in the 10th and 11th of testing at cutting speed and feed speed of 1500 rpm and 0.05 mm/rev, respectively. The dimensional accuracy was measured in three dimensions after drilling, which showed good results with an average range of 0.0138-0.0208 mm. Moreover, the lower the feed speed, the higher the accuracy. Additionally, the measurement results of the dimensional straightness showed that the straightness is the straightness was the best at the 1th and 2th cutting regardless of the feed speed.

New constitutive models for non linear analysis of high strength fibrous reinforced concrete slabs

  • Yaseen, Ahmed Asaad;Abdul-Razzak, Ayad A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.121-131
    • /
    • 2022
  • The main goal of this study is to prepare a program for analyzing High Strength Steel Fibrous Reinforced Concrete (HSSFRC) slabs and predict the response and strength of the slab instead of preparing a prototype and testing it in the laboratory. For this purpose, new equations are proposed to represent the material properties of High Strength Steel Fibrous Reinforced Concrete. The proposed equations obtained from performing regression analysis on many experimental results using statistical programs. The finite element method is adopted for non-linear analysis of the slabs. The eight-node "Serendipity element" (3 DoF) is chosen to represent the concrete. The layered approach is adopted for concrete elements and the steel reinforcement is represented by a smeared layer. The compression properties of the concrete are modeled by a work hardening plasticity approach and the yield condition is determined depending on the first two stress invariants. A tensile strength criterion is adopted in order to estimate the cracks propagation. many experimental results for testing slabs are compared with the numerical results of the present study and a good agreement is achieved regarding load-deflection curves and crack pattern. The response of the load deflection curve is slightly stiff at the beginning because the creep effect is not considered in this study and for assuming perfect bond between the steel reinforcement and the concrete, however, a great agreement is achieved between the ultimate load from the present study and experimental results. For the models of the tension stiffening and cracked shear modulus, the value of Bg and Bt (Where Bg and Bt are the curvature factor for the cracked shear modulus and tension stiffening models respectively) equal to 0.005 give good results compared with experimental result.

The thickness of the soft soil layer and canal-side road failure: A case study in Phra Nakhon Si Ayutthaya province, Thailand

  • Salisa Chaiyaput;Taweephong Suksawat;Lindung Zalbuin Mase;Motohiro Sugiyama;Jiratchaya Ayawanna
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.511-523
    • /
    • 2023
  • Canal-side roads frequently collapse due to an unexpectedly greater soft-clay thickness with a rapid drawdown situation. This causes annually increased repair and reconstruction costs. This paper aims to explore the effect of soft-clay thickness on the failure in the canal-side road in the case study of Phra Nakhon Si Ayutthaya rural road no. 1043 (AY. 1043). Before the actual construction, a field vane shear test was performed to determine the undrained shear strength and identify the thickness of the soft clay at the AY. 1043 area. After establishing the usability of AY. 1043, the resistivity survey method was used to evaluate the thickness of the soft clay layer at the failure zone. The screw driving sounding test was used to evaluate the undrained shear strength for the road structure with a medium-stiff clay layer at the failure zone for applying to the numerical model. This model was simulated to confirm the effect of soft-clay thickness on the failure of the canal-side road. The monitoring and testing results showed the tendency of rapid drawdown failure when the canal-side road was located on > 9 m thick of soft clay with a sensitivity > 4.5. The result indicates that the combination of resistivity survey and field vane shear test can be successfully used to inspect the soft-clay thickness and sensitivity before construction. The preliminary design for preventing failure or improving the stability of the canal-side road should be considered before construction under the critical thickness and sensitivity values of the soft clay.

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

Application of HWAW Method to Detect Underground Anomaly in Shallow Depth (지표 근처 지중 이상체 파악을 위한 HWAW 기법의 적용)

  • Bang, Eun-Seok;Kim, Gyeong-Seob;Son, Jeong-Sul;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.11-20
    • /
    • 2009
  • A new alternative method based on HWAW method to detect underground anomaly was introduced. The location of underground anomaly can be estimated by using 2-dimensional image of phase velocity image with position and wavelength based on distortion phenomena of surface wave due to underground anomaly. Overall procedure of proposed method such as field testing, signal processing and interpretation of the result was introduced. Numerical verification study was performed by using various ground models containing underground anomaly. According to the condition of anomaly, the propagation and reflection characteristics of surface wave were different and this could be more easily shown in the image of phase velocity. Some rules of distortion phenomena were found and these become clues for estimating underground anomaly in interpreting real field data. Field verification tests were performed with conventional geophysical methods such as DC resistivity method and GPR. Though field condition is not homogeneous like numerical models, similar distortion phenomena were found in the testing results and estimated location of underground anomaly was agreed well with the results of another geophysical methods.