• Title/Summary/Keyword: numerical testing

Search Result 850, Processing Time 0.024 seconds

Performance Estimation of Hexagonal Rockfall Protection Net by Numerical Analysis (수치해석을 이용한 육각 낙석방지망의 성능 평가)

  • Oh, Sewook;Park, Soobeom;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.53-59
    • /
    • 2014
  • It has been generally recognized that the conventional rockfall protection nets have several problems to actual field application in the aspect of shock absorption, lack of pullout bearing capacities, and net damages. Because of the recognition, authors have tried to develop a new rockfall protection system consisted of shock absorption parts and hexagonal net configuration. In the previous research by the authors, the performance of the newly developed rockfall protection system has been investigated through the laboratory tests and the full-scale testing. In this study, subsequently, numerical analysis program is organized to make a confirmation of the structural stability and performance. For the correct design procedure of the hexagonal net system, it is essential to understand the various mechanical behavior of the entire system. It is also important to be reproduced the systematic characteristics of the system acquired by laboratory and full-scale testing by numerical analysis in order to carry out the numerical experiment to understand various mechanical behavior of the system. As a conclusion, the hexagonal net has better performance in mechanical and physical behavior compared with that of the rectangular net. Furthermore, due to the hexagonal net shows a good performance in aspect of the load distribution, it gives a good alternative in long-term management of the rockfall protection net.

Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

  • Elawady, Amal;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.71-88
    • /
    • 2018
  • At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

Structural Analysis and Vibration Characteristics of Scaffolding Structures (비계 구조물의 구조해석 및 진동 특성)

  • Ryu, B.J.;Lee, C.R.;Kim, H.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.491-498
    • /
    • 2009
  • This paper deals with structural analysis and vibration characteristics of scaffolding structures with a hoist according to payloads. In order to analyze the vibrational and structural characteristics for 20-step scaffolding structure, structural and vibrational characteristics for 2-step scaffolding structure were compared with some experimental results. The numerical results for natural frequencies of scaffolding structures have a good agreement with experimental ones. Through the numerical analysis, firstly, it is shown that the maximum stress of scaffolding structures is lower than von-mises yield criteria when four persons with total weight of 280 kgf are working at the top of the scaffolding structures. Secondly, vibration characteristics including natural frequencies and modes for scaffolding structures are shown in case of various kinds of moving masses.

A Study on Vibration Characteristics of Scaffolding Structures with a Hoist according to Payloads (호이스트에 의한 비계 이송 시 적재하중에 의한 구조물 진동특성 연구)

  • Ryu, B.J.;Shin, G.B.;Lee, J.Y.;Baek, S.G.;Kim, H.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.543-548
    • /
    • 2006
  • This paper presents the vibration characteristics of scaffolding structures with a hoist according to payloads. In order to analyze the vibrational and structural characteristics for 20-step scaffolding structure, structural and vibrational characteristics for 2-step scaffolding structure were compared with some experimental results. The numerical results for natural frequencies of scaffolding structures have a good agreement with experimental ones. Through the numerical analysis, firstly, it is shown that the maximum stress of scaffolding structures is lower than von-mises yield criteria when four persons with total weight of 280kgf are working at the top of the scaffolding structures. Secondly vibration characteristics including natural frequencies and modes for scaffolding structures are shown in case of various kinds of moving masses.

  • PDF

An efficient modeling method for open cracked beam structures (열린 균열이 있는 보의 효율적 모델링)

  • Kim, M.D.;Choi, S.H.;Hong, S.W.;Lee, C.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.725-730
    • /
    • 2002
  • This paper presents an efficient modeling method for open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of open cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the difficulty and numerical errors in association with re-meshing the structure. The proposed method is rigorously compared with a commercial finite element code. Experiments are also performed to validate the proposed modeling method. Finally, a diagnostic scheme for open cracked beam structures is proposed and demonstrated through a numerical example.

  • PDF

Experimental Study on Viscous Fluid Damper for Seismic Base Isolation System (점성감쇠형 면진장치에 관한 실험적 연구)

  • 정민기;박진일;권형오;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.590-595
    • /
    • 1998
  • This study was performed to obtain a numerical model for a viscous fluid damper from an experimental testing. The input signals for displacement were chosen as two type : a triangular and a sinusoidal forms. The performing test parameters were the area of the resistant plate and the oil film thickness of the viscous fluid and the temperature effect was neglected. The numerical model was established by assuming to behavior as an non-Newtonian fluid. The test results were summarized by the equation of F = 0.0308A(V/d)$^{0.51}$25/. Using the obtainal formula, the procedure to apply the viscous damper for a real structure design was introduced..

  • PDF

Nonlinear analysis of reinforced concrete frame under lateral load

  • Salihovic, Amir;Ademovic, Naida
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.281-295
    • /
    • 2018
  • This study aims to investigate the capacity of different models to reproduce the nonlinear behavior of reinforced concrete framed structures. To accomplish this goal, a combined experimental and analytical research program was carried out on a large scaled reinforced concrete frame. Analyses were performed by SAP2000 and compared to experimental and VecTor2 results. Models made in SAP2000 differ in the simulation of the plasticity and the type of the frame elements used to discretize the frame structure. The results obtained allow a better understanding of the characteristics of all numerical models, helping the users to choose the best approach to perform nonlinear analysis.

Leaky-Wave Radiation from a Coaxial Waveguide with Periodic Circumferential Slots

  • Lee, Kyung-Bo;Lee, Chang-Won;Kim, Joong-Pyo;Son, Hyon
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.157-160
    • /
    • 1998
  • The analysis of a coaxial cable with periodic slots as a leaky-wave antenna is considered. The mode matching method and method of moments with Galerkin testing procedure is then used to obtain the determinantal equation for the unknown leaky-wave propagating constant. Both technigues allow the fields to be obtained in any region, and the radiation characteristics of the structure. By resorting to a suitable numerical techniques, it is possible to calculate the leaky-wave propagating constants and the radiation patterns. Numerical results demonstrate the validity of the technique.

  • PDF

Two Terminals Numerical Algorithm for Distance Protection, Fault Location and Acing Faults Recognition Based on Synchronized Phasors

  • Lee Chan-Joo;Park Jong-Bae;Shin Joong-Rin;Radojevic Zoran
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • This paper presents a new numerical algorithm for fault location estimation and for faults recognition based on the synchronized phasors. The proposed algorithm is based on the synchronized phasor measured from the synchronized PMUs installed at two-terminals of the transmission lines. In order to discriminate the fault type, the arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent or transient. The results of the proposed algorithm testing through computer simulation are given.

Cross-section classification of elliptical hollow sections

  • Gardner, L.;Chan, T.M.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.185-200
    • /
    • 2007
  • Tubular construction is widely used in a range of civil and structural engineering applications. To date, the principal product range has comprised square, rectangular and circular hollow sections. However, hot-rolled structural steel elliptical hollow sections have been recently introduced and offer further choice to engineers and architects. Currently though, a lack of fundamental structural performance data and verified structural design guidance is inhibiting uptake. Of fundamental importance to structural metallic design is the concept of cross-section classification. This paper proposes slenderness parameters and a system of cross-section classification limits for elliptical hollow sections, developed on the basis of laboratory tests and numerical simulations. Four classes of cross-sections, namely Class 1 to 4 have been defined with limiting slenderness values. For the special case of elliptical hollow sections with an aspect ratio of unity, consistency with the slenderness limits for circular hollow sections in Eurocode 3 has been achieved. The proposed system of cross-section classification underpins the development of further design guidance for elliptical hollow sections.