• Title/Summary/Keyword: numerical testing

Search Result 850, Processing Time 0.027 seconds

Antioxidant Activity of Rosa rugosa Thunberg and Effect on Serum Lipid Level in High Fat Diet-induced Mice (해당화 열매 추출 분말의 항산화 활성과 고지방 식이로 유도된 Mice의 혈청지질 수준에 미치는 영향)

  • Choi, Kyung-Soon;Kim, Yong-Hwan;Lee, Ki-Won;Shin, Kyung-Ok
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.2
    • /
    • pp.320-327
    • /
    • 2015
  • Since Korean ancient times, powder of Rosa rugosa Thunberg has been used as a folk remedy. This study was conducted to verify the effects of Rosa rugosa Thunberg powder on in vitro antioxidant properties and serum lipid levels of high-fat diet-induced mice from a nutritional viewpoint. In the case of Rosa rugosa Thunberg powders, measurement of TPC, ABTS radical scavenging activity of trolox, DPPH radical scavenging activity, and measured value of FRAP were higher in ethanol extract than water extracts. For LDL-cholesterol concentration, mice fed 10% powder of Rosa rugosa Thunberg with high-fat diets showed a high numerical value compared with other groups (p<0.05). When testing for triglyceride concentrations in blood, mice fed 10% and 20% powder of Rosa rugosa Thunberg with high-fat diets showed the lowest numerical values (p<0.05). When testing for blood insulin concentrations, the high-fat diet group showed higher levels than compared to the control group (p<0.05). When testing for blood leptin concentrations, the high-fat diet group was $5.88{\pm}3.53ng/dL$, whereas mice fed 10% powder of Rosa rugosa Thunberg with high-fat diets showed a blood leptin level of $10.36{\pm}5.96ng/dL$ (p<0.05). Therefore, results prove that powder of Rosa rugosa Thunberg reduces triglyceride concentrations in the blood, and could be used as an excellent natural antioxidant in the future.

Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment

  • Zhang, Qifeng;Feng, Yan;Cheng, Zhao;Jiao, Yang;Cheng, Hang;Wang, Jingquan;Qi, Jianan
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.175-183
    • /
    • 2022
  • To study the working mechanism and size effect of an innovative dovetail UHPC joint originated from the 5th Nanjing Yangtze River Bridge, a large-scale testing subject to negative bending moment was conducted and compared with the previous scaled specimens. The static responses, i.e., the crack pattern, failure mode, ductility and stiffness degradation were analyzed. It was found that the scaled specimens presented similar working stages and working mechanism with the large-scale ones. However, the post-cracking ductility and relative stiffness degradation all decrease with the enlarged length/scale, apart from the relative stiffness after flexural cracking. The slab stiffness at the flexural cracking stage is 90% of the initial stiffness while only 24% of the initial stiffness reserved in the ultimate stage. Finite element model (FEM) was established and compared with the experiments to verify its effectiveness in exploring the working mechanism of the innovative joint. Based on this effective method, a series of FEMs were established to further study the influence of material strength, pre-stressing level and ratio of reinforcement on its deflection-load relationship. It is found that the ratio of reinforcement can significantly improve its load-carrying capacity among the three major-influenced factors.

Application of numerical models to evaluate wind uplift ratings of roofs: Part II

  • Baskaran, A.;Molleti, S.
    • Wind and Structures
    • /
    • v.8 no.3
    • /
    • pp.213-233
    • /
    • 2005
  • Wind uplift rating of roofing systems is based on standardized test methods. Roof specimens are placed in an apparatus with a specified table size (length and width) then subjected to the required wind load cycle. Currently, there is no consensus on the table size to be used by these testing protocols in spite of the fact that the table size plays a significant role in wind uplift performance. Part I of this paper presented a study with the objective to investigate the impact of table size on the performance of roofing systems. To achieve this purpose, extensive numerical experiments using the finite element method have been conducted and benchmarked with results obtained from the experimental work. The present contribution is a continuation of the previous research and can be divided into two parts: (1) Undertake additional numerical simulations for wider membranes that were not addressed in the previous works. Due to the advancement in membrane technology, wider membranes are now available in the market and are used in commercial roofing practice as it reduces installation cost and (2) Formulate a logical step to combine and generalize over 400 numerical tests and experiments on various roofing configurations and develop correction factors such that it can be of practical use to determine the wind uplift resistance of roofs.

Application of numerical models to determine wind uplift ratings of roofs

  • Baskaran, A.;Borujerdi, J.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.213-226
    • /
    • 2001
  • Wind uplift rating of roofing systems is based on standardised test methods. Roof specimens are placed in an apparatus with specified table size (length and width) then subjected to the required wind load cycle. Currently, there is no consensus on the table size to be used by these testing protocols in spite of the fact that a table size plays a significant role in evaluating the performance. This paper presents a study with the objective to investigate the impact of table size on the performance of roofing systems. To achieve this purpose, extensive numerical experiments using the finite element method have been conducted to investigate the performance of roofing systems subjected to wind uplift pressures. Numerical results were compared with results obtained from experimental work to benchmark the numerical modeling. Required table size and curves for the determinations of appropriate correction factors are suggested. This has been completed for various test configurations with thermoplastic waterproofing membranes. Development of correction factors for assemblies with thermoset and modified bituminous membranes are in progress. Generalization of the correction factors and its usage for wind uplift rating of roofs will be the focus of a future paper.

Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass

  • Chong, Song-Hun;Kim, Ji-Won;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Non-destructive exploration using elastic waves has been widely used to characterize rock mass properties. Wave propagation in jointed rock masses is significantly governed by the characteristics and orientation of discontinuities. The relationship between spatial heterogeneity (i.e., joint spacing) and wavelength for elastic waves propagating through jointed rock masses have been investigated previously. Discontinuous rock masses can be considered as an equivalent continuum material when the wavelength of the propagating elastic wave exceeds the spatial heterogeneity. However, it is unclear how stress-dependent long-wavelength elastic waves propagate through a repetitive rock-joint system with multiple joints. A preliminary numerical simulation was performed in in this study to investigate long-wavelength elastic wave propagation in regularly jointed rock masses using the three-dimensional distinct element code program. First, experimental studies using the quasi-static resonant column (QSRC) testing device are performed on regularly jointed disc column specimens for three different materials (acetal, aluminum, and gneiss). The P- and S-wave velocities of the specimens are obtained under various normal stress levels. The normal and shear joint stiffness are calculated from the experimental results using an equivalent continuum model and used as input parameters for numerical analysis. The spatial and temporal sizes are carefully selected to guarantee a stable numerical simulation. Based on the calibrated jointed rock model, the numerical and experimental results are compared.

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

An Experimental and Numerical Investigation of the Structural Durability of Vehicle Frames in Small Electric Sweepers (소형전기청소차(Small E-Sweeper) 프레임의 실험 및 수치해석을 통한 구조강도 연구)

  • Cho, Kyu-Chun;Lee, Ji-Sun;Shin, Haeng-Woo;Jang, Myeong-Kyun;Yu, Jik-Su;Jeong, Min-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.116-124
    • /
    • 2021
  • In this study, the reliability of vehicle frames employed in small electric road sweepers was assessed through durability testing. The frames were tested under three conditions, whereby mechanical loads were applied to (1) the entire frame, (2) the front frame, and (3) the rear frame. The strain distributions in the loaded frames were determined through a combination of direct strain gauge measurements and supplementary numerical analysis. While subtle differences were observed between the experimental and numerical analyses, both methods successfully yielded comparable deformation patterns. Thus, the dependence of stress distribution and the state of the frame on loading conditions could be fully identified through our combined structural and numerical analysis.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.

Numerical Analysis of Scattered Fields of Ultrasonic SH-Wave by Multi-Defects (재료내 다중결함에 의한 SH형 초음파 산란장의 수치해석)

  • Lee, Joon-Hyun;Lee, Seo-Il;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.304-312
    • /
    • 1998
  • In order to assure the reliability and integrity of structures such as bridges, Power and petrochemical plants, nondestructive evaluation techniques are recently playing more important roles. Among the various kinds of nondestructive evaluation techniques, ultrasonic technique is one of the most widely used methods for nondestructive inspection of internal defects in structures. For the reliable quantitative evaluation of internal defects from the experimental ultrasonic signals, a numerical analysis of ultrasonic scattering field due to a defect distribution is absolutely required. In this paper, the SH-wave scattering by multi-cavity defects using elastodynamic boundary element method is studied. The effects of shape of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in 50-wave scattering is also investigated. Numerical calculation by the boundary element method has been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results would be useful to improve the sensitivity of flaw defection for inverse analysis and pursue quantitative nondestructive evaluation for inverse problem.

  • PDF

Quantitative Comparison of Out-of-Plane Deformation Measured by Dual-Function Interferometer System (이중기능 간섭계에 의해 측정된 면외변형의 정략적 비교)

  • Kim, Kyoung-Suk;Chang, Ho-Seob;Lee, Seung-Seok;Jung, Hyun-Chul;Kwag, Jae-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • Dual-function interferometer is an interferometer that has all features of ESPI (electronic speckle pattern interferometry) and shearography in one interferometer setup. The deformatiou of an object is directly obtained by ESPI while the slope of the deformation of an object is obtained by shearography. If the result of shearography is divided by shearing amount and integrated by numerical analyzing, then finally the reconstructed deformation of an object that is the same as the results directly obtained by ESPI can be measured by shearography. In this study, rubber and alruminum plates are used as specimen and its out-of-plane deformation is measured by ESPI and shearography setup of the dual-function interferometer. Each of the results obtained by ESPI and shearography is compared by using numerical integration to the result of shearography. From this study, it is confirmed that the reconstructed deformation results obtained by numerical integration good agree with the results obtained by ESPI.