• Title/Summary/Keyword: numerical range

Search Result 2,391, Processing Time 0.028 seconds

Numerical investigations on the turbulence driven responses of a plate in the subcritical frequency range

  • De Rosa, S.;Franco, F.;Gaudino, D.
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.247-261
    • /
    • 2012
  • Some numerical investigations are presented concerning the response of a given plate under turbulence driven excitations. Three different input loads are simulated according to the wall pressure distributions derived from the models proposed by Corcos, Efimtsov and Chase, respectively. Modal solutions (finite element based) are used for building the modal stochastic responses in the sub-critical aerodynamic frequency range. The parametric investigations concern two different values of the structural damping and three values of the boundary layer thickness. A final comparison with available experimental data is also discussed. The results demonstrate that the selection of the adequate TBL input model is still the most critical step in order to get a good prediction.

FIND THE ROOT CAUSE OF WELDING-INDUCED DISTORTION BY NUMERICAL MODELING METHOD

  • Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.681-687
    • /
    • 2002
  • The cumulative, shrinkage plastic strains and their distributions in the weld joint after completion of the welding process determine welding-induced distortion. Although the weldment undergoes many complex physical and metallurgical changes during welding, only the material plastic temperature range and its cooling history below this temperature range influence the [mal state of the cumulative shrinkage plastic strains. In addition, for structural welds, these plastic strains are uniform, except in the arc start and stop regions, along the weld. Therefore, the plastic strain-based "inherent shrinkage model" is effective and accurate to describe welding-induced distortion. This paper presents the theoretical background and numerical verification of this root cause.

  • PDF

Cross-section classification of elliptical hollow sections

  • Gardner, L.;Chan, T.M.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.185-200
    • /
    • 2007
  • Tubular construction is widely used in a range of civil and structural engineering applications. To date, the principal product range has comprised square, rectangular and circular hollow sections. However, hot-rolled structural steel elliptical hollow sections have been recently introduced and offer further choice to engineers and architects. Currently though, a lack of fundamental structural performance data and verified structural design guidance is inhibiting uptake. Of fundamental importance to structural metallic design is the concept of cross-section classification. This paper proposes slenderness parameters and a system of cross-section classification limits for elliptical hollow sections, developed on the basis of laboratory tests and numerical simulations. Four classes of cross-sections, namely Class 1 to 4 have been defined with limiting slenderness values. For the special case of elliptical hollow sections with an aspect ratio of unity, consistency with the slenderness limits for circular hollow sections in Eurocode 3 has been achieved. The proposed system of cross-section classification underpins the development of further design guidance for elliptical hollow sections.

A Numerical Model of an Edge-clamped Rectangular Plate Based on a Mode Method to Predict Acoustic Radiation Characteristics (모드법에 의한 클램프 조건 사각평판의 음향방사특성 예측모델)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.374-383
    • /
    • 2011
  • A numerical model based on a mode method coupling beams and a rectangular plate is proposed to estimate radiation characteristics of an edge-clamped rectangular plate. The radiation efficiency and radiation power in the audio frequency range including the critical frequency can be predicted. The proposed model is rather simple and straightforward and gives reliable results comparing to the previous studies. The estimated radiation characteristics are compared to those of the pinned condition plates and also to those based on the formulae proposed by Maidanik. The radiation efficiency of the clamped plate seems a little higher than that of the pinned plate in the frequency range of corner and edge modes. It is explicitly shown that the power as well as efficiency at high frequencies is not influenced by these edge boundary conditions.

Numerical Study on Laminar Flow over Three Side-by-Side Cylinders

  • Kang, Sangmo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1869-1879
    • /
    • 2004
  • The present study has numerically investigated two-dimensional flow over three circular cylinders in an equidistant side-by-side arrangement at a low Reynolds number. For the study, numerical simulations are performed, using the immersed boundary method, in the range of g* < 5 at Re= 100, where g* is the spacing between two adjacent cylinder surfaces divided by the cylinder diameter. Results show that the flow characteristics significantly depend on the gap spacing and a total of five kinds of wake patterns are observed over the range: modulation-synchronized (g* (equation omitted) 2), inphase-synchronized (g* (equation omitted) 1.5) , flip-flopping (0.3 < g* (equation omitted) 1.2) , deflected (g* (equation omitted) 0.3), and single bluff-body patterns (g* < 0.3). Moreover, the parallel and symmetric modes are also observed depending on g* in the regime of the flip-flopping pattern. The corresponding flow fields and statistics are presented to verify the observations.

An Analysis of Sound Pressure Distribution in a Reverberation Room and Comparisons with Measurements (잔향실의 음압분포해석 및 계측치와의 비교)

  • 김현실;김재승;강현주;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.669-674
    • /
    • 1997
  • A sound field in a reverberation room is analyzed by using numerical methods and the SPL distributions are compared to the measurements. In numerical predictions, the BEM is employed in the low frequency range, while sound ray tracing method is used for the high frequency range. In the BEM analysis, the surfaces of the empty reverberation room are assumed as rigid boundaries and the damping coefficients are estimated from the measured absorption coefficient. The comparisons with measurements for 100Hz shows good agreement. In the sound ray tracing analysis, the predicted energy decay are in excellent agreements with theoretical results. It is shown that the energy absorption by air damping plays an important role as frequency becomes higher.

  • PDF

A PRICING METHOD OF HYBRID DLS WITH GPGPU

  • YOON, YEOCHANG;KIM, YONSIK;BAE, HYEONG-OHK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.277-293
    • /
    • 2016
  • We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.

Numerical Model for Flood Inundation Analysis in a River(II) : Uncertainty Analysis (하천 홍수범람해석을 위한 수치모형의 개발(II): 불확실도 해석)

  • Lee, Hong-Rae;Han, Geon-Yeon;Kim, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.429-437
    • /
    • 1998
  • The numerical model named "DWOPER-LEV" for the uncertainty analysis of flood inundation is developed. DWOPER model is expanded to compute overtopping risks of levee and to predict the range of the possible flood extent. Monte-Carlo simulation is applied to examine the uncertainties in cross section geometry and Manning's roughness coefficient. The model is applied to an actual levee break of the South Han River. The risks of overtopping are computed and the possible range of inundated area and inundated depth are estimated.

  • PDF

An Experimental Study on Optimal Size of Core Material in Rubble Mould Breakwater (사석 방파제에서 내부사석의 적정규격에 관한 실험적 연구)

  • 민석진;배종철;김성득
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • In general, core materials of rubble mound breakwater are used at a restricted range of 0.015㎥~0.03㎥. However, it is not satisfied with the standard design in over fifty percent of the cases. In this study, model tests and numerical analysis are employed to examine the range of core material that has no problem with capacity maintenance and stability of rubble mound breakwater. Model tests measure the porosities that are mixed in various ratios, to classify core materials by three parameters. The slope stability of rubble mound breakwater is investigated, using numerical analysis, with a friction angle and a unit weight. The change of unit weight, which is followed by the mixed rate of size core material, has no large affect on slope stability, and there is no problem with ensuring slope stability of the rubble mound breakwater.

A Study on the Relationship between Sound Quality and Structural Mechanics in Automobiles (차량 구조 강성과 소음 음질간의 상관도 연구)

  • Choi Jongdae;Kim Sangmin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.239-242
    • /
    • 2000
  • In the present study, the influence of car body structures to the noise and vibration characteristics has been sought. The numerical modal analysis for the body-in-white is employed to predict the vibratory response of structure, and then followed by the experimental modal testing to confirm the validity of the model. Using the results of numerical simulations with the designated modal parameters, the optimal structural configuration has been deduced. Special interests have been paid to the sensitivity of sound quality to the structural integrity. Since the structural integrity has a close relationship to the structure-born noise, the substantially low frequency range, which is far below the frequency range almost barely sensible by human auditory organ but still quite influential to overall impression, is especially examined. The subjective assessment agrees with the objective evaluation by means of traditional sound measures as well as psychoacoustic metrics.

  • PDF