• Title/Summary/Keyword: numerical parametric study

Search Result 1,017, Processing Time 0.026 seconds

Coupled Simulation of Common Rail Fuel Injection and Combustion Characteristics in a HSDI Diesel Engine (HSDI 디젤엔진의 연료분사계와 연소현상을 연계한 수치해석)

  • Lee, Suk-Young;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, the coupled simulation of fuel injection model and three-dimensional KIVA-3V code was tried to develop an algorism for predicting the effects of varying fuel injection parameter on the characteristics of fuel injection and emissions. The numerical simulations were performed using STAR-CD code in order to calculate the intake air flow, and the combustion characteristics is examined by KIVA-3V code linked with the conditional moment closure(CMC) model to predict mean turbulent reaction rate. Parametric investigation with respect to twelve relevant injection parameters shows that appropriate modification of control chamber orifice diameter, needle valve spring constant and nozzle chamber orifice diameter can significantly reduce NOx and soot emissions. Consequently, it is needed to optimize the fuel injection system to reduce the specific emissions such as NOx and soot.

Numerical Investigations on Laminar Flame Speed of Syngas Flames at IGCC Gas Turbine Condition (IGCC 가스터빈 운전조건에서의 석탄가스 층류화염속도에 대한 기초연구)

  • Lee, Jeong-Won;Oh, Kyung-Taek;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.38-45
    • /
    • 2011
  • Coal-derived syngas has been utilized by main fuel at IGCC power plant. Research efforts for investigating the characteristics of premixed and nonpremixed flames at gas-turbine condition have been conducted. The present study has been mainly motivated to evaluate the capability of the detailed chemical kinetics to predict the syngas laminar flame speed. Special emphasis is given to the effects of pressure, temperature, syngas composition, and dilution level on the characteristics of premixed and nonpremixed flames. The predicative capability of a number of detailed mechanism for laminar flame speed is compared to experimental data. From these results, detailed kinetics of Davis et al. and Li et al. have the best conformity with the experiments in the all the case of parametric studies.

Time-domain hydroelastic analysis with efficient load estimation for random waves

  • Kang, H.Y.;Kim, M.H.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.266-281
    • /
    • 2017
  • Hydroelastic interactions of a deformable floating body with random waves are investigated in time domain. Both hydroelastic motion and structural dynamics are solved by expansion of elastic modes and Fourier transform for the random waves. A direct and efficient structural analysis in time domain is developed. In particular, an efficient way of obtaining distributive loads for the hydrodynamic integral terms including convolution integral by using Fubini theory is explained. After confirming correctness of respective loading components, calculations of full distributions of loads in random waves are expedited by reformulating all the body loading terms into distributed forms. The method is validated by extensive convergence tests and comparisons against the counterparts of the frequency-domain analysis. Characteristics of motion/deformation responses and stress resultants are investigated through a parametric study with varying bending rigidity and types of random waves. Relative contributions of componential loads are identified. The consequence of elastic-mode resonance is underscored.

Parametric Study on Performance of Inertance Pulse Tube Cryocooler

  • Lee, K.H.;Rhee, J.;Kim, J.S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.205-211
    • /
    • 2014
  • The design parameters to affect the cooling capacity of a cryocooler were examined with the application of numerical modeling to optimize an inertance pulse tube cryocooler. This modeling includes the regenerator, pulse tube, inertance tube, gas reservoir, and heat exchangers. One-dimensional modeling on strings of acoustic and thermoacoustic elements was applied to compare the design parameters. The diameter and length of the pulse tube can significantly affect the cooling capacity and efficiency. The aftercooler was optimized by maintaining a certain size. The efficiency also improved as the length of inertance tube and volume of gas reservoir are increased. It was confirmed that effective design parameters are critical to the performance of an inertance pulse tube cryocooler considering the comparison of the dimensions of each part to optimize its cooling power and efficiency.

Stress Concentration of Longitudinal Rib to Deckplate Welded Joint in Orthotropic Steel Bridge Decks (강상판 종리브.바닥강판 응접연결부의 응력집중)

  • 장동일;최동호;최준혁;김도환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.343-350
    • /
    • 1999
  • Orthotropic steel bridge decks are potentially liable to cause fatigue cracks due to weld defects, residual stresses, and in-plane or out-of-plane stresses. In particular, the cracks propagated through deckplate in longitudinal rib to deckplate joints occur at weld toe and weld root due to stress concentrations. Numerical parametric studies are performed to show the Influence of the parameters on the stress concentration at the connection between the longitudinal rib and the deckplate. The parameters include root gap, toe angle $\theta$, toe radius $\rho$, and weld penetration. This study provides a fundamental point for the improvement of fatigue resistance and the estimation of the fatigue crack propagation in wekded joint details.

  • PDF

Parametric Study on SDOF System with MR Damper Using Hysteretic Biviscous Model (단자유도 시스템에 대한 이력이점성 모델을 사용한 MR감쇠기 변수 연구)

  • 이상현;민경원;이루지;김대곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.27-33
    • /
    • 2004
  • In this paper, various dynamic model of magnetorheological (MR) damper, is required for describing the hysteresis of MR damper and for their application are investigated to structural control. The dynamic characteristics and control effects of the modeling methods for MR dampers such as Bingham, biviscous, hysteretic biviscous, simple Bouc-Wen, Bouc-Wen with mass element and phenomenological models are studied. Of these models, hysteretic biviscous model which is simple and describes the hysteretic characteristics, is chosen for numerical studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force.

  • PDF

Evaluation of Ultimate Tendon Stress in Prestressed Concrete Members with External Unbonded Tendons (외부 비부착 강선을 가진 부재의 극한 강선응력 평가)

  • 오병환;유성원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.381-386
    • /
    • 1999
  • The member with external unbonded tendon has two remarkable characteristics, i.e., eccentricity variation and slip by friction force at deviators, compared with internal bonded or unbonded member. An efficient numerical procedure for the nonlinear analysis of prestressed concrete beam with external unbonded tendon considering two remarkable characteristics is formulated and corresponding computer code is developed. On the basis of statistical process of parametric study results, strain compatibility method, eccentricity variation predictor and tendon stress predictor at ultimate state are proposed and verified with test results and existing Codes, which can evaluate flexural behavior at ultimate state. Finally, the proposed procedure and predictors can be efficiently used for the realistic and accurate analysis of prestressed concrete members with external unbonded tendons.

  • PDF

A Parametric Study on the Interaction between Ground Movements and Adjacent Structures in Urban Tunnelling (도심지 터널굴착에 따른 인접 구조물과 지반거동의 상호영향에 대한 매개변수 연구)

  • 강봉재;황의석;이봉렬;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.485-492
    • /
    • 2000
  • Current design practice for the prediction of tunnelling-induced ground movements depends on empirical methods, which are based on many assumptions and simplification of the modeling. Some discrepancies between the predictions and the measurements of ground movements regarding adjacent structures are inevitable. In order to investigate tunnel-induced ground movements affect on the settlement of existing structures as well as existing structures affect tunnel-induced ground movement, 2-D elasto-plastic finite element analysis are performed. The following influencing factors such as load of the structures, the width of structures, its bending and axial stiffness, its position relative to the tunnel are considered in the numerical analysis.

  • PDF

Parametric Study on the Aerodynamic Design of Axial-Flow Turbine Blades Using Two-Dimensional Navier-Stokes Equations (Navier-Stokes 방정식에 의한 축류터빈 블레이드의 공력학적 설계변수 특성 연구)

  • Chung, Ki-Seob;Chung, Hee-Taeg;Park, Jun-Young;Baek, Je-Hyun;Chang, Beom-Ik;Cho, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.169-175
    • /
    • 2000
  • A design method for transonic turbine blades is developed based on Navier-Stokes equations. The present computing process is done on the four separate steps, 1.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to the aerodynamic performance and are compared with the experimental data.

  • PDF

Numerical Analysis of Hypersonic Flow around a Diamond Type Wing (극초음속에 놓인 다이아몬드형 날개의 수치적 유동 해석)

  • Kim Sung-soo;Kim Chongam;Rho Oh-hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.84-89
    • /
    • 1998
  • This paper describes aerodynamic heating on a hypersonic vehicle. For this purpose, the 2-D, and 3-D equilibrium code are developed. In order to obtain an accurate solution, AUSMPW+ is used for spatial discretization. Curve fitting data in NASA Reference Publication 1181, 1260 are used to calculate equilibrium properties. To observe aerodynamic heating phenomena, Reynolds number parametric study for diamond airfoil is done, 3-D full Navier-Stokes equation is computed and wall temperature distribution data are obtained. Analyzing these results, we conclude that Reynolds number and secondary flow are important factors in aerodynamic heating.

  • PDF