• 제목/요약/키워드: numerical parametric study

검색결과 1,017건 처리시간 0.025초

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Green Wall 시스템의 설계 및 해석을 위한 기초연구 (A Basic Study for Design and Analysis of the Green Wall System)

  • 박시삼;김종민;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.681-688
    • /
    • 2005
  • The Green Wall is the highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. Hence, the purpose of this study was to provide the design and analysis technique of the segmental retaining wall reinforced by soil nailing. Also, in this study, various parametric studies using numerical method as shear strength reduction (SSR) technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF

바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구 (Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads)

  • 최경규;박홍근
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.153-164
    • /
    • 2000
  • Numerical studies were carried out to investigate long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was developed. It can address creep and shrinkage as weel as geometrical and material nonlinearity, and also it can address various load combinations and loading sequences of transverse load, in-plane compressive load and time. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with four parameters; 1) loading sequence of floor load, compressive load and time 2) uniaxial and biaxial compression 3) the ratio of dead to live load 4) span length. Through the numerical studies, the behavioral characteristics of the flat plates and the governing load combinations were examined. These results will be used to develop a design procedure for the long-term behavior of flat plates in the future.

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads

  • Sharma, R.K.;Domala, V.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • 제9권4호
    • /
    • pp.369-390
    • /
    • 2019
  • Herein, we present numerical simulation based model to study the use of a 'Tuned Mass Damper (TMD)' - particularly spring mass systems - to control the displacements at the deck level under seismic and ice loads for an offshore jacket structure. Jacket is a fixed structure and seismic loads can cause it to vibrate in the horizontal directions. These motions can disintegrate the structure and lead to potential failures causing extensive damage including environmental hazards and risking the lives of workers on the jacket. Hence, it is important to control the motion of jacket because of earthquake and ice loads. We analyze an offshore jacket platform with a tuned mass damper under the earthquake and ice loads and explore different locations to place the TMD. Through, selected parametric variations a suitable location for the placement of TMD for the jacket structure is arrived and this implies the design applicability of the present research. The ANSYS*TM mechanical APDL software has been used for the numerical modeling and analysis of the jacket structure. The dynamic response is obtained under dynamic seismic and ice loadings, and the model is attached with a TMD. Parameters of the TMD are studied based on the 'Principle of Absorption (PoA)' to reduce the displacement of the deck level in the jacket structure. Finally, in our results, the proper mass ratio and damping ratios are obtained for various earthquake and ice loads.

Parametric study of the convergence of deep tunnels with long term effects: Abacuses

  • Quevedo, Felipe P.M.;Bernaud, Denise
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.973-986
    • /
    • 2018
  • The objective of this paper is to present abacuses obtained from a parametric study of deep-lined tunnels using a numerical finite element model. This numerical model was implemented in software GEOMEC91, which is a two-dimensional axisymmetric model that considers the progress of excavation and the placing of the lining through the activation and deactivation of elements. It is adopted a step of excavation constant (1/3 of radius), constant velocity and circular cross section along the tunnel axis. It is used for rock mass a viscoplastic constitutive law with von-Mises criterion of viscoplasticity without hardening whose deformation rate over time is given by the Bingham model. The lining uses a linear elastic constitutive law. In total are 1716 analysis presented in 60 abacuses that show the value of ultimate convergence ($U_{eq}$) due to tunneling speed. In addition, it is shown an example of the use of the abacuses to determine the ultimate convergence ($U_{eq}$) of the tunnel and pressure ($P_{eq}$) on the lining.

Numerical optimization of a vertical axis wind turbine: case study at TMU campus

  • Mirfazli, Seyed Kourosh;Giahi, Mohammad Hossein;Dehkordi, Ali Jafarian
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.191-201
    • /
    • 2019
  • In this paper, the aerodynamic analysis of a vertical axis wind turbine was carried out by CFD approach to optimize the turbine performance. To perform numerical simulation, SST-Transition turbulence model was used, which demonstrated more precise results compared to non-transition models. A parametric study was conducted to optimize the VAWT performance based on the selected model. The investigation of pitch angle changes showed that the highest power produced by the turbine occurs at $2^{\circ}$ angle. Considering the effect of the rotor's arm junction to the airfoil showed that by increasing the distance of the junction from the edge of the airfoil from 25 cm to 40 cm, the power of the turbine increases by 60%. However, further increase in this distance results in power decrease. Based on the proposed numerical model, a case study was conducted to consider the installation of four VAWTs in the southwest corner of the medical science building at TMU campus with a height of 42m. The results of the simulation showed that 8.27 MWh energy is obtainable annually.

해양 구조물의 K-Joint 특성 연구 (Parametric Study of K-Joint Offshore Structure)

  • 조철희;박관규;임성우;김준영
    • 한국전산구조공학회논문집
    • /
    • 제20권1호
    • /
    • pp.51-56
    • /
    • 2007
  • 해양구조물에서 많이 사용되는 K-Joint는 그 구조특성으로 인해 응력집중이 발생하며 최적 설계를 위한 가이드라인제시가 요구된다. 형상특성에 따른 응력집중 현상이 다르게 발생함으로 형상을 결정하는 각종 변수인 ${\alpha},\;{\beta},\;{\gamma},\;{\tau},\;{\theta}$의 변화에 따른 조인트의 응력변화를 분석하였다. 수치적인 패라메트릭 연구를 통해 응력 변화 특성을 제시하였고 주요 요소에 따른 최대 응력값도 나타내었고 수치해석 결과를 실험값과 비교하였다.

퍼포본드 FRP-콘크리트 합성보의 휨거동에 관한 매개변수 연구 (A Parametric Study for Bending Behavior of Perfobond FRP-Concrete Composite Beam)

  • 유승운;국무성
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.2396-2402
    • /
    • 2012
  • 최근 영구거푸집과 보강재 역할을 동시에 하는 FRP-콘크리트 합성부재에 관한 연구가 많이 진행되고 있으며, 일부에서는 실제 교량바닥판에 적용되고 있다. 본 연구에서는 파괴실험으로 평가한 퍼포본드 FRP 콘크리트 합성보에 대해 비선형 유한요소해석 프로그램을 활용하여 검증해석을 실시하고, 이를 이용하여 FRP 보강재 형상에 따른 매개변수 해석을 수행하였다. 퍼포본드 FRP 보강재의 경우 다우웰 영향으로 내력이 증가하는 양상이 나타났고, 본 해석모델을 중심으로 판단하면 웨브의 높이를 고려하여 25~35mm 범위에서 구멍직경을 결정하는 것이 바람직하다고 판단된다.

Mechanical performances of concrete beams with hybrid usage of steel and FRP tension reinforcement

  • Bui, Linh V.H.;Stitmannaithum, Boonchai;Ueda, Tamon
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.391-407
    • /
    • 2017
  • Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and especially in corrosive environments to improve the durability of concrete structures. However, FRPs have a low modulus of elasticity and a linear elastic behavior up to rupture, thus reinforced concrete (RC) components with such materials would exhibit a less ductility in comparison with steel reinforcement at the similar members. There were several studies showed the behavior of concrete beams with the hybrid combination of steel and FRP longitudinal reinforcement by adopting the experimental and numerical programs. The current study presents a numerical and analytical investigation based on the data of previous researches. Three-dimensional (3D) finite element (FE) models of beams by using ANSYS are built and investigated. In addition, this study also discusses on the design methods for hybrid FRP-steel beams in terms of ultimate moment capacity, load-deflection response, crack width, and ductility. The effects of the reinforcement ratio, concrete compressive strength, arrangement of reinforcement, and the length of FRP bars on the mechanical performance of hybrid beams are considered as a parametric study by means of FE method. The results obtained from this study are compared and verified with the experimental and numerical data of the literature. This study provides insight into the mechanical performances of hybrid FRP-steel RC beams, builds the reliable FE models which can be used to predict the structural behavior of hybrid RC beams, offers a rational design method together with an useful database to evaluate the ductility for concrete beams with the combination of FRP and steel reinforcement, and motivates the further development in the future research by applying parametric study.