• Title/Summary/Keyword: numerical oscillations

Search Result 209, Processing Time 0.021 seconds

A Numerical Study on Acoustic Damping Induced by Gap between Baffled Injectors in a Model Rocket Combustor (모형 로켓 연소실에서 배플형 분사기의 간극에 의한 음향 감쇠 효과에 관한 수치적 연구)

  • Sohn, Chae-Hoon;Lee, Jung-Yun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.35-42
    • /
    • 2007
  • Acoustic damping induced by gap width between baffled injectors is investigated numerically, which are installed to suppress pressure oscillations in a model rocket combustor. The previous work reported that the baffled injectors show larger acoustic damping with the gap width between injectors. It is simulated numerically and its mechanism is examined. Damping factors are calculated as a function of gap width and it is found that the optimum gap is 0.1 mm or so. For understanding of the improved damping induced by the gap, dissipation rate of turbulent kinetic energy and vorticity are calculated as a function of the gap. Both parameters have their maximum values at the specific gap and especially, the dissipation rate has the same profile as that of damping factor. It verifies that the improved damping made by the gap is attributed to the increased acoustic-energy dissipation.

Dynamic characteristics of single door electrical cabinet under rocking: Source reconciliation of experimental and numerical findings

  • Jeon, Bub-Gyu;Son, Ho-Young;Eem, Seung-Hyun;Choi, In-Kil;Ju, Bu-Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2387-2395
    • /
    • 2021
  • Seismic qualifications of electrical equipment, such as cabinet systems, have been emerging as the key area of nuclear power plants in Korea since the 2016 Gyeongju earthquake, including the high-frequency domain. In addition, electrical equipment was sensitive to the high-frequency ground motions during the past earthquake. Therefore, this paper presents the rocking behavior of the electrical cabinet system subjected to Reg. 1.60 and UHS. The high fidelity finite element (FE) model of the cabinet related to the shaking table test data was developed. In particular, the first two global modes of the cabinet from the experimental test were 16 Hz and 24 Hz, respectively. In addition, 30.05 Hz and 37.5 Hz were determined to be the first two local modes in the cabinet. The high fidelity FE model of the cabinet using the ABAQUS platform was extremely reconciled with shaking table tests. As a result, the dynamic properties of the cabinet were sensitive to electrical instruments, such as relays and switchboards, during the shaking table test. In addition, the amplification with respect to the vibration transfer function of the cabinet was observed on the third floor in the cabinet due to localized impact corresponding to the rocking phenomenon of the cabinet under Reg.1.60 and UHS. Overall, the rocking of the cabinet system can be caused by the low-frequency oscillations and higher peak horizontal acceleration.

FRF Analysis of a Vehicle Passing the Bump Barrier (둔턱 진행 차량의 주파수응답 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2022
  • The purpose of this study was to investigate the frequency characteristics of forced vibration considering the vehicle progress. And the vibration characteristics in frequency domain that occur, when vehicle passes the bump, were analyzed. The responses such as displacement, velocity and acceleration were obtained through numerical analysis, and FFT processing was performed to analyze the frequency response function(FRF) characteristics. In particular, the location of vehicle eigenmodes and external excitation modes was clearly shown and analyzed. In the forced vibration model by external force, the behavior of the eigenmode in power spectrum and real and imaginary parts were also analyzed. The mode characteristics were also analyzed in each FRF. It was approximated by assuming total excitation force by considering the exciting frequency using impulse and sine wave forces, which can give the amplitude and frequencies. The response characteristics of forced oscillations having different mass, damping and stiffness have been systematically discussed.

Handling Method for Flux and Source Terms using Unsplit Scheme (Unsplit 기법을 적용한 흐름율과 생성항의 처리기법)

  • Kim, Byung-Hyun;Han, Kun-Yeon;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1079-1089
    • /
    • 2009
  • The objective of this study is to develop the accurate, robust and high resolution two-dimensional numerical model that solves the computationally difficult hydraulic problems, including the wave front propagation over dry bed and abrupt change in bathymetry. The developed model in this study solves the conservative form of the two-dimensional shallow water equations using an unsplit finite volume scheme and HLLC approximate Riemann solvers to compute the interface fluxes. Bed-slope term is discretized by the divergence theorem in the framework of FVM for application of unsplit scheme. Accurate and stable SGM, in conjunction with the MUSCL which is second-order-accurate both in space and time, is adopted to balance with fluxes and source terms. The exact C-property is shown to be satisfied for balancing the fluxes and the source terms. Since the spurious oscillations in second-order schemes are inherent, an efficient slope limiting technique is used to supply TVD property. The accuracy, conservation property and application of developed model are verified by comparing numerical solution with analytical solution and experimental data through the simulations of one-dimensional dam break flow without bed slope, steady transcritical flow over a hump and two-dimensional dam break flow with a constriction.

Water-Level Fluctuation due to Groundwater-Surface Water Interaction in Coastal Aquifers (해안대수층에서 지하수-지표수 상호작용에 의한 지하수위 변화)

  • Kim Kue-Young;Lee Cheol-Woo;Kim Yongje;Kim Taehee;Woo Nam-Chil
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.32-41
    • /
    • 2004
  • Analysis of water-level fluctuation due to goundwater-surface water interaction in coastal aquifers is carried out by numerical modeling. The conceptual model used in this study has a stream boundary and a tidal boundary that forms a right angle and the stream partially penetrates the aquifer. We analyzed the effect of each boundary and the simultaneous effect of the two boundary conditions. The area of influence caused by the stream boundary increased during the simulation, while the influence zone of the coastal boundary was relatively constant. The groundwater level near the zone where two boundaries meet may rise by the action of combined effect of the two boundaries or may not change by cancelling the effect of each boundary. Thereafter, care must be taken when hydraulic parameters are estimated using sinusoidal oscillations of hydraulic head in coastal aquifers. Sensitivity analysis is employed to develop insight into the controls on groundwater level fluctuations. In this study our analyses focused on the effect of conductance and the stream width to the aquifer nearby.

Characteristics of Tide-induced Flow and its Effect on Pollutant Patterns Near the Ocean Outfall of Wastewater Treatment Plants in Jeju Island in Late Spring (제주도 하수처리장 해양방류구 인근해역의 늦은 봄철 조류 특성과 조석잔차류에 의한 오염물질의 분포 특성)

  • KIM, JUN-TECK;HONG, JI-SEOK;MOON, JAE-HONG;KIM, SANG-HYUN;KIM, TAE-HOON;KIM, SOO-KANG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.63-81
    • /
    • 2021
  • In this study, we investigated the tide-induced flow patterns near the ocean outfall of the Jeju and Bomok Wastewater Treatment Plants (WTP) in Jeju Island by using measurements of Acoustic Doppler Current Meter (ADCP) and a numerical experiment with inserting passive tracer into a regional ocean model. In late spring of 2018, the ADCP measurements showed that tidal currents dominate the flow patterns as compared to the non-tidal components in the outfall regions. According to harmonic analysis, the dominant type of tides is mixed of diurnal and semi-diurnal but predominantly semidiurnal, showing stronger oscillations in the Jeju WTP than those in the Bomok WTP. The tidal currents oscillate parallel to the isobath in both regions, but the rotating direction is different each other: an anti-clockwise direction in the Jeju WTP and a clockwise in the Bomok WTP. Of particular interest is the finding that the residual current mainly flows toward the coastline across the isobath, especially at the outfall of the Bomok WTP. Our model successfully captures the features of tidal currents observed near the outfall in both regions and indicates possibly high persistent pollutant accumulation along the coasts of Bomok.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

Unsteady Aerodynamic Characteristics of an Non-Synchronous Heaving and Pitching Airfoil Part 1 : Frequency Ratio (비동기 히브 및 피치 운동에 따른 에어포일 비정상 공력 특성 Part 1 : 진동 주파수 비)

  • Seunghwan Ji;Cheoulheui Han
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.54-62
    • /
    • 2023
  • Flapping-wing air vehicles, well known for their free vertical take-off and excellent flight capability, are currently under intensive development and research. While most of the studies have explored the effect of various parameters of synchronized motions on the unsteady aerodynamics of flapping wings, limited attention has been given to the effect of nonsynchronous motions on the unsteady aerodynamic characteristics of flapping wings. In the present study, we conducted a numerical analysis to investigate the unsteady aerodynamic characteristics of an airfoil flapping with different frequency ratios between pitch and heave oscillations. We identified the motions and angle of attacks due to nonsynchronous motions. It was found that the synchronous motion produced thrust with zero lift, but the nonsynchronous motion generated a large lift with little drag. The aerodynamic characteristics of the airfoil undergoing the non-synchronous motion were also analyzed using the vorticity distributions and the pressure coefficient around and on the airfoil. When r was equal to 0.5, larger leading and trailing edge vortices were observed compared to the case when r was equal to 1.0, and these vortices significantly affected the aerodynamic characteristics of the airfoil undergoing the nonsynchronous motion. In future, the effect of pitch amplitude on the unsteady aerodynamic characteristics of the airfoil will be studied.