• Title/Summary/Keyword: numerical oscillation

Search Result 371, Processing Time 0.023 seconds

Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation

  • Xu, Gang;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • 제1권4호
    • /
    • pp.355-372
    • /
    • 2011
  • Based on the fully nonlinear velocity potential theory, the liquid sloshing in a three dimensional tank under random excitation is studied. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing scheme, B-spline curve, is applied to both the longitudinal and transverse directions of the tank to eliminate the possible saw-tooth instabilities. When the tank is undergoing one dimensional regular motion of small amplitude, the calculated results are found to be in very good agreement with linear analytical solution. In the simulation, the normal standing waves, travelling waves and bores are observed. The extensive calculation has been made for the tank undergoing specified random oscillation. The nonlinear effect of random sloshing wave is studied and the effect of peak frequency used for the generation of random oscillation is investigated. It is found that, even as the peak value of spectrum for oscillation becomes smaller, the maximum wave elevation on the side wall becomes bigger when the peak frequency is closer to the natural frequency.

정사각형 밀폐공간내에서 수평격판에 의한 자연대류의 진동현상 (Oscillatory Motion of Natural Convection in a Square Enclosure with a Horizontal Partition)

  • 김점수;정인기;송동주
    • 설비공학논문집
    • /
    • 제5권4호
    • /
    • pp.285-294
    • /
    • 1993
  • An oscillatory motion of natural convection in a two-dimensional square enclosure fitted with a horizontal partition is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was positioned perpendicularly at the mid-height of one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of the partition length and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection has perfectly shown the periodicity with the decrease of Rayleigh number, and the stability was reduced to a chaotic state with the increase of Rayleigh number. The period of oscillation gets shorten with the decrease of the partition length and the increase of Rayleigh number. The frequency of oscillation obtained by the variations of stream function is more similar to the experimental results than that of the average Nusselt number. The stability of oscillation grows worse with the increase of Rayleigh number. The transition Rayleigh number for the chaos is gradually decreased with the increase of the partition length.

  • PDF

주기적으로 회전하는 원형실린더 주위의 유동특성 (Characteristics of Flow Over a Rotationally Oscillating Cylinder)

  • 최해천;최성호;강상모
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.515-523
    • /
    • 2002
  • Effects of rotary oscillation on unsteady laminar flow past a circular cylinder have been investigated in this study. Numerical simulations are performed for the flow at Re=100 in the range of 0.2<$\Omega$<2.5 and 0.02<$St_f$<0.8, where $\Omega$ and $St_f$ are, respectively, the maximum rotation velocity and rotation frequency normalized by the free-stream velocity and cylinder diameter. Results show that rotary oscillation has significant effects on the flow. When the rotation frequency is near the natural vortex-shedding frequency, lock-on occurs and the lock-on frequency range becomes wider as the rotation velocity increases. In a certain range of the rotation frequency and velocity, modulations in the velocity, lift and drag signals occur and this modulation frequency is expressed as a linear combination of the rotation frequency and vortex-shedding frequency. The mean drag and amplitude of the lift fluctuations show local minima near the boundary between the lock-on non and lock-on regions.

진동하는 구 주위의 유동에 관한 수치적 연구 (Numerical Study of Flow Around an Oscillating Sphere)

  • 이진욱;이대성;하만영;윤현식
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.767-772
    • /
    • 2010
  • The incompressible viscous flow past a sphere under forced oscillation is numerically investigated at a Reynolds number of 300. The immersed boundary method is used to handle the sphere oscillating vertically to the streamwise direction. There are two important variables to characterize the oscillating state of a sphere. One is an oscillating amplitude normalized by the sphere diameter is set as a fixed number of 0.2. Another is the frequency ratio which is defined by $f_e/f_o$, where fe and fo are the excited frequency and the natural frequency of vortex shedding for the stationary sphere. In this study, three different frequency ratios of 0.8, 1.0 and 1.2 are considered. The results show a periodic flow with hairpin vortices shedding from upper and lower positions as well as vortical legs obliquely extended by oscillating motion of sphere. The enveloping vortical structure experience rupture twice in one period of oscillation. As the frequency of oscillation is increased, the vortical legs are getting shorter and eventually the hairpin vortices are much closer to the adjacent one.

부스팅 모드에서 IRR(Integral Rocket Ramjet) 초음속 흡입구의 압력진동 감쇄 방안 연구 (A Study of Preventing Pressure Oscillation for Supersonic Inlet of IRR at the Boosting Mode)

  • 박근홍;윤현걸;임진식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.563-564
    • /
    • 2010
  • IRR의 부스팅 모드 시 흡입구에 발생하는 압력진동을 감쇄하기 위한 방안을 수치적으로 연구하였다. 축대칭 형태의 초음속 흡입구에 slit을 장착하여 유입되는 공기 유량을 줄여가며 흡입구 내부의 압력 진동을 조사하였다. 흡입되는 유량이 감소함에 따라 압력의 진폭은 감소하고 내부 압력의 최댓값 역시 감소하였으며, 주파수는 약간 증가하는 경향을 보였다. 흡입구의 slit을 이용하여 최적화된 압력 진폭과 주파수대를 얻어낼 수 있다면, 이 방안은 IRR의 부스팅 모드 및 천이 모드에서의 안정성을 높이는데 활용될 수 있을 것으로 판단된다.

  • PDF

입자법을 이용한 축대칭 탄자의 관통거동 수치해석 연구 (A Study on Numerical Perforation Analysis of Axisymmetric Bullet by the Particle Method)

  • 김용석;김용환
    • 한국군사과학기술학회지
    • /
    • 제11권6호
    • /
    • pp.164-171
    • /
    • 2008
  • A modified generalized particle algorithm, MGPA, was suggested to improve the computational efficiency of standard SPH method in numerical analysis of high speed impact behavior. This method uses a numerical failure mechanism than material failure models to describe the target penetration. MGPA algorithm was more effective to describe the impact phenomena and new boundaries produced during the calculation process were well recognized and treated in the target penetration problem of a bullet. When bullet perforation problems were analyzed by this method, MGPA algorithm calculation gives the stable numerical solution and stress oscillation or particle penetration phenomena were not shown. The error range in ballistic velocity limit is less than $2{\sim}13%$ for various target thickness.

수평가진을 받는 직사각형 용기 내 2차 유동의 실험적/수치해석적 연구 (Experimental/Numerical Study on a Secondary Flow within a Rectangular Container Subjected to a Horizontal Oscillation)

  • 변민수;서용권
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.1014-1021
    • /
    • 2002
  • Analysis of two-dimensional secondary flows given by an oscillatory motion of a liquid with a free surface in a rectangular container subject to a linear reciprocating force is performed by numerical and experimental methods. FVM is used for the numerical computation of the two-dimensional flows. We considered the effects of the free-surface properties such as the surface tension and the dilatational viscosity. The boundary-layer analysis as well as an experiment is used in establishing the free surface properties. The secondary flow patterns are visualized by a laser sheet. It is shown that the secondary flow patterns predicted by the numerical methods are in good agreement with the experimental results.

불균질한 온도장을 고려한 가스터빈 연소기의 음향장 해석 (A Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity)

  • 손채훈;조한창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1292-1297
    • /
    • 2004
  • Acoustic characteristics in an industrial gas-turbine combustor are numerically investigated by adopting linear acoustic analysis. Spatially non-homogeneous temperature field in the combustor is considered in the numerical calculation and the characteristics are analyzed in view of acoustic instability. Acoustic analysis are conducted in the combustors without and with acoustic resonator, which is one of combustion stabilization devices. It has been reported that severe pressure fluctuation frequently occurs in the adopted combustor, and the measured signal of pressure oscillation is compared with the acoustic-pressure response from the numerical calculation. The numerical results are in a good agreement with the measurement data. In this regard, the phenomenon of pressure fluctuation in the combustor could be caused by acoustic instability. The acoustic effects of the resonators are analyzed in the viewpoints of both the frequency tuning and the damping capacity.

  • PDF

염수와 담수의 혼합에 관한 3차원 수치모형 (A three-dimensional Numerical Model for the Mixing of Saltwater and Freshwater)

  • 장원재;이승오;조용식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.233-236
    • /
    • 2008
  • To analyze the saline intrusion in the place, such as an estuary, the three-dimensional numerical model is developed. In this study, the advection terms of the governing equations are discretized by upwind scheme. By using an explicit scheme for the longitudinal direction and an implicit scheme for the vertical direction, the numerical model is free from the restriction of temporal step size caused by a relatively small grid ratio. The equation of state is used to consider the density, and the scalar transport equation for salinity is employed the third order TVD to scheme to prevent unphysical oscillation near discontinuity. In order to verify saline intrusion, the numerical model is conducted to compare the previous model in the lock exchange. The present model generally show a good agreement with the previous one.

  • PDF

Simulating the performance of the reinforced concrete beam using artificial intelligence

  • Yong Cao;Ruizhe Qiu;Wei Qi
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.269-286
    • /
    • 2023
  • In the present study, we aim to utilize the numerical solution frequency results of functionally graded beam under thermal and dynamic loadings to train and test an artificial neural network. In this regard, shear deformable functionally-graded beam structure is considered for obtaining the natural frequency in different conditions of boundary and material grading indices. In this regard, both analytical and numerical solutions based on Navier's approach and differential quadrature method are presented to obtain effects of different parameters on the natural frequency of the structure. Further, the numerical results are utilized to train an artificial neural network (ANN) using AdaGrad optimization algorithm. Finally, the results of the ANN and other solution procedure are presented and comprehensive parametric study is presented to observe effects of geometrical, material and boundary conditions of the free oscillation frequency of the functionally graded beam structure.