• Title/Summary/Keyword: numerical optimization

Search Result 2,301, Processing Time 0.028 seconds

Improved Concurrent Subspace Optimization Using Automatic Differentiation (자동미분을 이용한 분리시스템동시최적화기법의 개선)

  • 이종수;박창규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.359-369
    • /
    • 1999
  • The paper describes the study of concurrent subspace optimization(CSSO) for coupled multidisciplinary design optimization (MDO) techniques in mechanical systems. This method is a solution to large scale coupled multidisciplinary system, wherein the original problem is decomposed into a set of smaller, more tractable subproblems. Key elements in CSSO are consisted of global sensitivity equation(GSE), subspace optimization (SSO), optimum sensitivity analysis(OSA), and coordination optimization problem(COP) so as to inquiry valanced design solutions finally, Automatic differentiation has an ability to provide a robust sensitivity solution, and have shown the numerical numerical effectiveness over finite difference schemes wherein the perturbed step size in design variable is required. The present paper will develop the automatic differentiation based concurrent subspace optimization(AD-CSSO) in MDO. An automatic differentiation tool in FORTRAN(ADIFOR) will be employed to evaluate sensitivities. The use of exact function derivatives in GSE, OSA and COP makes Possible to enhance the numerical accuracy during the iterative design process. The paper discusses how much influence on final optimal design compared with traditional all-in-one approach, finite difference based CSSO and AD-CSSO applying coupled design variables.

  • PDF

Numerical stability and parameters study of an improved bi-directional evolutionary structural optimization method

  • Huang, X.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • This paper presents a modified and improved bi-directional evolutionary structural optimization (BESO) method for topology optimization. A sensitivity filter which has been used in other optimization methods is introduced into BESO so that the design solutions become mesh-independent. To improve the convergence of the optimization process, the sensitivity number considers its historical information. Numerical examples show the effectiveness of the modified BESO method in obtaining convergent and mesh-independent solutions. A study of the effects of various BESO parameters on the solution is then conducted to determine the appropriate values for these parameters.

Application of Numerical Optimization Technique to the Design of Fans (송풍기 설계를 위한 수치최적설계기법의 응용)

  • Kim, K.Y.;Choi, J.H.;Kim, T.J.;Rew, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.566-576
    • /
    • 1995
  • A Computational code has been developed in order to design axial fans by the numerical optimization techniques incorporated with flow analysis code solving three-dimensional Navier-Stokes equation. The steepest descent method and the conjugate gradient method are used to look for the search direction in the design space, and the golden section method is used for one-dimensional search. To solve the constrained optimization problem, sequential unconstrained minimization technique, SUMT, is used with imposed quadratic extended interior penalty functions. In the optimization of two-dimensional cascade design, the ratio of drag coefficient to lift coefficient is minimized by the design variables such as maximum thickness, maximum ordinate of camber and chord wise position of maximum ordinate. In the application of this numerical optimization technique to the design of an axial fan, the efficiency is maximized by the design variables related to the sweep angle distributed by quadratic function along the hub to tip of fan.

  • PDF

Optimization of a sandwich beam design: analytical and numerical solutions

  • Awad, Ziad K.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • An optimization work was developed in this work to provide design information for sandwich beam in civil engineering applications. This research is motivated by the wide-range applications of sandwich structures such as; slab, beam, girder, and railway sleeper. The design of a sandwich beam was conducted by using analytical and numerical optimization. Both analytical and numerical procedures consider the optimum design with structure mass objective minimization. Allowable deflection was considered as design constraints. It was found that the optimized core to the skins mass ratio is affected by the skin to core density and elastic modulus ratios. Finally, the optimum core to skin mass ratio cannot be constant for different skin and core materials.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Design Optimization of Axial Flow Compressor Blades with Three-Dimensional N avier-Stokes Solver

  • Lee, Sang-Yun;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.1005-1012
    • /
    • 2000
  • Numerical optimization techniques combined with a three-dimensional thin-layer Navier-Stokes solver are presented to find an optimum shape of a stator blade in an axial compressor through calculations of single stage rotor-stator flow. Governing differential equations are discretized using an explicit finite difference method and solved by a multi-stage Runge-Kutta scheme. Baldwin-Lomax model is chosen to describe turbulence. A spatially-varying time-step and an implicit residual smoothing are used to accelerate convergence. A steady mixing approach is used to pass information between stator and rotor blades. For numerical optimization, searching direction is found by the steepest decent and conjugate direction methods, and the golden section method is used to determine optimum moving distance along the searching direction. The object of present optimization is to maximize efficiency. An optimum stacking line is found to design a custom-tailored 3-dimensional blade for maximum efficiency with the other parameters fixed.

  • PDF

Dynamic sensitivity analysis and optimum design of aerospace structures

  • Gu, Yuanxian;Kang, Zhan;Guan, Zhenqun;Jia, Zhiwen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • The research and applications of numerical methods of design optimization on structural dynamic behaviors are presented in this paper. The emphasis is focused on the dynamic design optimization of aerospace structures, particularly those composed of composite laminate and sandwich plates. The methods of design modeling, sensitivity analysis on structural dynamic responses, and the optimization solution approaches are presented. The numerical examples of sensitivity analysis and dynamic structural design optimization are given to demonstrate the effectiveness of the numerical methods.

A Study on Trim Optimization by using CFD Analysis (CFD를 이용한 트림 최적화 연구)

  • Kim, In-Chul;Yoon, Ji-Hyun;Jeong, Young-Jun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.41-45
    • /
    • 2015
  • In this study reviewed the validity of the estimated optimum trim by the numerical analysis. For this purpose, the numerical analysis of the trim optimization for 6500TEU container carrier and capesize bulk carrier were carried out using Star-CCM+, which results were compared with the results of model tests. The reliability of results of the numerical analysis was confirmed via comparing the resistance determined by the numerical analysis and model test. The performance of self-propulsion at each trim conditions were estimated using the calculated resistance by numerical analysis. The BHP at each trim condition were calculated by estimated performance of self-propulsion, which trend of results were confirmed similar trend of result of model test.

  • PDF

A Study on the Robust Design Using Kriging Surrogate Models (크리깅 근사모델을 이용한 강건설계에 관한 연구)

  • Lee, Kwon-Hee;Cho, Yong-Chul;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.870-875
    • /
    • 2004
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, the robust design strategy is developed based on the DACE and the global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the system. The robustness is determined by the DACE model to reduce the real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

  • PDF

Three-dimensional Topology Optimization using the CATO Algorithm

  • LEE, Sang Jin;BAE, Jung Eun
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • An application of the constrained adaptive topology optimization (CATO) algorithm is described for three-dimensional topology optimization of engineering structures. The enhanced assumed strain lower order solid finite element (FE) is used to evaluate the values of objective and constraint functions required in optimization process. The strain energy (SE) terms such as elastic and modal SEs are employed as the objective function to be minimized and the initial volume of structures is introduced as the constraint function. The SIMP model is adopted to facilitate the material redistribution and also to produce clearer and more distinct structural topologies. The linearly weighted objective function is introduced to consider both static and dynamic characteristics of structures. Several numerical tests are tackled and it is used to investigate the performance of the proposed three-dimensional topology optimization process. From numerical results, it is found to be that the CATO algorithm is easy to implement and extremely applicable to produce the reasonable optimum topologies for three dimensional optimization problems.