• 제목/요약/키워드: numerical optimization

검색결과 2,301건 처리시간 0.028초

구조물의 설계 최적화를 위한 메트로폴리스 유전알고리즘의 개발 및 적용 (Development and Application of Metropolis Genetic Algorithm for the Structural Design Optimization)

  • 박균빈;류연선;김정태;조현만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.115-122
    • /
    • 2003
  • A Metropolis genetic algorithm(MGA) is developed and applied for the structural design optimization. In MGA favorable features of Metropolis algorithm in simulated annealing(SA) are incorporated in simple genetic algorithm(SGA), so that the MGA alleviates the disadvantage of finding imprecise solution in SGA and time-consuming computation in SA. Performances of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro genetic algorithm(μGA), and Kirkpatrick's SA. Typical numerical examples are used to evaluate the favorable features and applicability of MGA From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA is a reliable and efficient tool for structural design optimization.

  • PDF

차륜과 레일 접촉위치의 수치해석에 관한 연구 (A Study on Numerical Analysis of Wheel-rail Contact Points)

  • 강주석
    • 한국철도학회논문집
    • /
    • 제12권2호
    • /
    • pp.236-242
    • /
    • 2009
  • 본 연구에서는 철도차량의 차륜과 레일에 대해 플랜지 접촉을 포함하여 모든 위치예서 차륜-레일간 접촉 위치를 수치 해석적으로 구하는 방범을 제안한다. 이를 위해 차륜과 레일의 형상은 매개변수로 표현되는 3차원 곡면함수로 나타내었다. 기구학적 구속조건식을 Newton-Rhapson 방법을 이용하여 구하는 것과 차륜과 레일간 최소거리가 0이 된다는 최적화 방법을 동시에 이용하여 정확하고 효율적으로 계산하는 새로운 방법을 제안하였다.

축류송풍기 설계를 위한 최적설계기법의 평가 (Assessment of Optimization Methods for Design of Axial-Flow Fan)

  • 최재호;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 1999
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables.

  • PDF

Damage detection technique in existing structures using vibration-based model updating

  • Devesh K. Jaiswal;Goutam Mondal;Suresh R. Dash;Mayank Mishra
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.63-86
    • /
    • 2023
  • Structural health monitoring and damage detection are essential for assessing, maintaining, and rehabilitating structures. Most of the existing damage detection approaches compare the current state structural response with the undamaged vibrational structural response, which is unsuitable for old and existing structures where undamaged vibrational responses are absent. One of the approaches for existing structures, numerical model updating/inverse modelling, available in the literature, is limited to numerical studies with high-end software. In this study, an attempt is made to study the effectiveness of the model updating technique, simplify modelling complexity, and economize its usability. The optimization-based detection problem is addressed by using programmable open-sourced code, OpenSees® and a derivative-free optimization code, NOMAD®. Modal analysis is used for damage identification of beam-like structures with several damage scenarios. The performance of the proposed methodology is validated both numerically and experimentally. The proposed method performs satisfactorily in identifying both locations and intensity of damage in structures.

횡류팬 유로최적화를 위한 수치실험 (Numerical Experiments for the Optimization of the Flow Path through a Cross-Flow Fan)

  • 전용두;이종수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.147-151
    • /
    • 2002
  • Cross flow fan system is widely used for various applications, especially for the air-moving device of heaters, air-conditioners, and air-curtains. Although there are efforts for the optimization of cross-flow fan flow path with different methods of approach, it is still being investigated by many researchers through experimentally and/or theoretically, because the flow pattern of the cross flow fan is not stereotyped. This paper presents some results from numerical experiments for the optimization of the flow path through a cross-flow fan to be applied to indoor wall-mounted room heater. Two dimensional analysis has been applied to a specific fan system including inlet and diffuser outlet. Flow characteristics art presented and discussed for two different flow path at three different operating conditions represented by rotational speed(800, 1,000, 1,200 rpm) of the In. According to the simulated results for the specific fan system under consideration, it could be found that the flow pattern resembles each other at different rotational speed (to say from 800 rpm to 1,200 rpm) for a fixed flow path, while the secondary flows mostly absorbs the speed effects. By changing the flow path significant increase in volume flow rate is estimated upto 2.65 at the same rotational speed. According to the present experience, fan flow path design can be performed more efficiently by incorporating this type of numerical experiments combined with the model tests.

  • PDF

Bicriteria optimal design of open cross sections of cold-formed thin-walled beams

  • Ostwald, M.;Magnucki, K.;Rodak, M.
    • Steel and Composite Structures
    • /
    • 제7권1호
    • /
    • pp.53-70
    • /
    • 2007
  • This paper presents a analysis of the problem of optimal design of the beams with two I-type cross section shapes. These types of beams are simply supported and subject to pure bending. The strength and stability conditions were formulated and analytically solved in the form of mathematical equations. Both global and selected types of local stability forms were taken into account. The optimization problem was defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of the beam is the second. The geometric parameters of cross section were selected as the design variables. The set of constraints includes global and local stability conditions, the strength condition, and technological and constructional requirements in the form of geometric relations. The optimization problem was formulated and solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal compromise solutions was generated. The numerical procedures include discrete and continuous sets of the design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal designing of thin-walled beams, increasing information required in the decision-making procedure.

유동 시스템의 형상 최적 설계를 위한 성장-변형률법의 적용 (Application of the Growth-Strain Method for Shape Optimal Design of a Flow System)

  • 한석영;이상환;김종필;맹주성
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.945-950
    • /
    • 2002
  • Shape optimization of a flow system is done to obtain the required effects, in the engineering fields. Most of these designs are accomplished by empirical or numerical analysis. In empirical analysis, it is difficult to obtain an optimal shape in the feasible design region. And, in numerical method, it usually needs much calculation expenses for shape optimization, because of design sensitivity analysis. In this study, we used the growth-strain method having only one distributed parameter such as a design variable. It optimizes a shape by making a distributed parameter such as dissipation energy uniform in a flow system, and then applied to two-flow systems. In order to overcome the stability occurred in numerical analysis performed by Azegami, the equation of volumic strain has been modified. Also, the shapes were compared with the known optimal shapes for the flow systems. Consequently, we confirm that the modified growth-strain method is very efficient and practical in shape optimization of the flow systems.

최적화 방법을 이용한 Delaunay 격자의 내부 격자밀도 적응 방법 (Delaunay mesh generation technique adaptive to the mesh Density using the optimization technique)

  • 홍진태;이석렬;박철현;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2004
  • A mesh generation algorithm adapted to the mesh density map using the Delaunay mesh generation technique is developed. In the finite element analyses of the forging processes, the numerical error increases as the process goes on because of discrete property of the finite elements or severe distortion of elements. Especially, in the region where stresses and strains are concentrated, the numerical discretization error will be highly increased. However, it is too time consuming to use a uniformly fine mesh in the whole domain to reduce the expected numerical error. Therefore, it is necessary to construct locally refined mesh at the region where the error is concentrated such as at the die corner. In this study, the point insertion algorithm is used and the mesh size is controlled by moving nodes to optimized positions according to a mesh density map constructed with a posteriori error estimation. An optimization technique is adopted to obtain a good position of nodes. And optimized smoothing techniques are also adopted to have smooth distribution of the mesh and improve the mesh element quality.

  • PDF

공력설계를 위한 수치최적설계기법의 연구 (A Study on Numerical Optimization Method for Aerodynamic Design)

  • 김설송;최재호;김광용
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.29-34
    • /
    • 1999
  • To develop the efficient numerical optimization method for the design of an airfoil, an evaluation of various methods coupled with two-dimensional Naviev-Stokes analysis is presented. Simplex method and Hook-Jeeves method we used as direct search methods, and steepest descent method, conjugate gradient method and DFP method are used as indirect search methods and are tested to determine the search direction. To determine the moving distance, the golden section method and cubic interpolation method are tested. The finite volume method is used to discretize two-dimensional Navier-Stokes equations, and SIMPLEC algorithm is used for a velocity-pressure correction method. For the optimal design of two-dimensional airfoil, maximum thickness, maximum ordinate of camber line and chordwise position of maximum ordinate are chosen as design variables, and the ratio of drag coefficient to lift coefficient is selected as an objective function. From the results, it is found that conjugate gradient method and cubic interpolation method are the most efficient for the determination of search direction and the moving distance, respectively.

  • PDF

Tidal Farming Optimization around Jangjuk-sudo by Numerical Modelling

  • Nguyen, Manh Hung;Jeong, Haechang;Kim, Bu-Gi;Yang, Changjo
    • 한국유체기계학회 논문집
    • /
    • 제19권4호
    • /
    • pp.54-62
    • /
    • 2016
  • This study presents an approach of tidal farming optimization using a numerical modelling method to simulate tidal energy extraction for 1MW scale tidal stream devices around Jangjuk-sudo, South Korea. The utility of the approach in this research is demonstrated by optimizing the tidal farm in an idealized scenario and a more realistic case with three scenarios of 28-turbine centered tidal array (named A, B and C layouts) inside the Jangjuk-sudo. In addition, the numerical method also provides a pre-processing calculation helps the researchers to quickly determine where the best resource site is located when considering the position of the tidal stream turbine farm. From the simulation results, it is clearly seen that the net energy (or wake energy yield which includes the impacts of wake effects on power generation) extracted from the layout A is virtually equal to the estimates of speed-up energy yield (or the gross energy which is the sum of energy yield of each turbine without wake effects), up to 30.3 GWh/year.