• Title/Summary/Keyword: numerical formulation

Search Result 1,594, Processing Time 0.035 seconds

Transient Electromagnetic Scattering from 3-Dimensional Dielectric Objects by Using PMCHW Integral Equation (PMCHW 적분식을 이용한 3차원 유전체의 전자파 과도산란)

  • Seo, Jung-Hoon;Han, Sang-Ho;An, Hyun-Su;Jung, Baek-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.78-81
    • /
    • 2003
  • In this paper, we analyze the transient electromagnetic response from three-dimensional dielectric bodies using a time-domain PMCHW (Poggio, Miller, Chang, Harrington, Wu) formulation. The time-domain unknown coefficients of the equivalent currents are approximated by a set of orthonormal basis functions that are derived from the Laguerre polynomials. Numerical results computed by the proposed method are presented.

  • PDF

Toward the Application of a Critical-Chain-Project-Management-based Framework on Max-plus Linear Systems

  • Takahashi, Hirotaka;Goto, Hiroyuki;Kasahara, Munenori
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.155-161
    • /
    • 2009
  • We focus on discrete event systems with a structure of parallel processing, synchronization, and no-concurrency. We use max-plus algebra, which is an effective approach for controller design for this type of system, for modeling and formulation. Since a typical feature of this type of system is that the initial schedule is frequently changed due to unpredictable disturbances, we use a simple model and numerical examples to examine the possibility of applying the concepts of the feeding buffer and the project buffer of critical chain project management (CCPM) on max-plus linear discrete event systems in order to control the occurrence of an undesirable state change. The application of a CCPM-based framework on a max-plus linear discrete event system was proven to be effective.

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

Optimal Design of Vehicle Passenger Compartment (차량승객실의 최적설계)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.60-66
    • /
    • 1999
  • This study is to develop design sensitivity analysis method based on continuum theory for the actual buckling load of vehicle passenger compartment with respect to sizing design variables. For nonlinear structural analysis, both geometric and material nonlinear effects are considered. The total Lagrangian formulation for incremental equilibrium analysis and one-point linear eigenvalue problem for buckling analysis are utilized. Numerical methods are presented to evaluate design sensitivity expressions, using structural analysis results from FEM code. Optical design of vehicle passenger compartment with buckling constraint solved using Gradient projection method.

  • PDF

Impact response analysis of delaminated composite laminates using analytical solution (이론 해를 이용한 층간 분리된 적층판의 충격거동 해석)

  • Kim, Sung-Joon;Shin, Jeong-Woo;Chae, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.315-320
    • /
    • 2007
  • An analytical solution has been developed for the impact response of delaminated composite plates. The analysis is based on an expansion of loads, displacements, and rotations in a Fourier series which satisfies the end boundary conditions of simply-supported. The analytical formulation adopts the Laplace transformation technique, requiring a linearization of contact deformation. In this paper, the nonlinear contact stiffness is replaced by a linearized stiffness, to provide an estimate of the additional compliance due to contact area deformation effects. It has been shown that defects such as delaminations may be modeled as spring stiffness. The change in the impact characteristics as this spring stiffness has been investigated theoretically. Predicted impact responses using analytical solution are compared with the numerical ones from the 3-D non-linear finite element model. From the results, it is shown that analytical solution was found to be reliable for predicting the impact response.

  • PDF

Prediction of broadband noise signal from a large wind turbine (대형 풍력발전기 블레이드의 광대역 소음 신호 예측 및 분석)

  • Lee, Seunghoon;Lee, Seungmin;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • This study predicted broadband noise from a generic 2.5MW wind turbine blade in the time domain. The rotor blade was modeled as thin rectangular flat plates. A simplified analytic model proposed by Amiet was used to model the unsteady surface pressure distribution. The acoustic pressure was calculated by using the loading term of Formulation 1A proposed by Farassat. The validation was also performed by comparing with an experiment of Brooks, Pope, and Marcolini. By using these numerical methods, the broadband noise signal of the wind turbine was successfully predicted in this study.

  • PDF

Correction Factor for Assessment of Nearshore Wave Energy (근해 파력에너지 산정을 위한 보정 기법에 관한 연구)

  • Kim, Gunwoo;Jeong, Weon Mu;Jun, Kicheon;Lee, Myung Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.164.1-164.1
    • /
    • 2011
  • Previously, many researchers assessed nearshore wave energy in two ways. The first is a simulation with respect to the offshore wave time series to validate the wave buoy data and the wave model results, and the other is to simulate the representative waves of typical seasonal wave conditions. The former requires enormous computational time and effort. The latter yields inspection on the patterns for the spatial and temporal distribution of nearshore wave energy but tends to underestimates the amount of wave energy in the nearshore region owing to the correlation between the significant wave height and wave period. $\ddot{O}$zger et al. (2004) derived the stochastic wave energy formulation by introducing a correction factor explicitly in terms of the covariance of the wave energy and significant wave height. In this study, a correction factor was applied for the assessment of nearshore wave energy obtained by numerical simulation of wave transformation with respect to representative waves.

  • PDF

Thermal Effect on the Vibration Characteristics of Pretwisted Rotating Blade (열 효과를 고려한 비틀림이 있는 회전 블레이드의 진동 특성)

  • Kee, Young-Jung;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.810-815
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of this study. In the present work, general formulation is proposed to analyze the rotating shell-type structures including the effect of centrifugal force, Coriolis acceleration and initial twist. Furthermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. In addition, it is investigated the effect of thermal load on the vibration characteristics of pretwisted blade. Numerical results are summarized for the various parameters such as rotating speed, angle of pretwist and stacking sequence of a composite blade. Also, present results are compared with the previous works and experimental data.

  • PDF

Time Historical Response Analysis of Tree Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 분기형 구조물의 시긴이력응답해석)

  • 문덕홍;강현석;최명수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.426-431
    • /
    • 1998
  • This, paper describes formulation for time historical response analysis of vibration for tree structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark-.betha. method. And This present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the tree structure. The validity of the present method compared with the transfer matrix method and the FEM(Finite Element Method) for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

Free Vibrations of Ocean Cables under Currents (조류력을 받는 해양케이블의 자유진동해석)

  • 김문영;김남일;윤종윤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.231-237
    • /
    • 1999
  • A geometric non-linear finite element formulation of spatial ocean cable under currents is presented using multiple noded curved cable elements. Tangent stiffness and mass matrices for the isoparametric cable ele¬ment are derived and the initial equilibrium state of ocean cable subjected to self-weights, buoyancy, and current as well as support motions is determined using the load incremental method. Free vibration analysis of ocean cables is performed based on the initial equilibrium configuration. Numerical examples are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate dynamic characteristics of ocean cables.

  • PDF