• 제목/요약/키워드: numerical formulation

Search Result 1,594, Processing Time 0.143 seconds

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.

Static bending study of AFG nanobeam using local stress-and strain-driven nonlocal integral models

  • Yuan Tang;Hai Qing
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.265-272
    • /
    • 2024
  • In this paper, the problem of static bending of axially functionally graded (AFG) nanobeam is formulated with the local stress(Lσ)- and strain-driven(εD) two-phase local/nonlocal integral models (TPNIMs). The novelty of the present study aims to compare the size-effects of nonlocal integral models on bending deflections of AFG Euler-Bernoulli nano-beams. The integral relation between strain and nonlocal stress components based on two types nonlocal integral models is transformed unitedly and equivalently into differential form with constitutive boundary conditions. Purely LσD- and εD-NIMs would lead to ill-posed mathematical formulation, and Purely εD- and LσD-nonlocal differential models (NDM) may result in inconsistent size-dependent bending responses. The general differential quadrature method is applied to obtain the numerical results for bending deflection and moment of AFG nanobeam subjected to different boundary and loading conditions. The influence of AFG index, nonlocal models, and nonlocal parameters on the bending deflections of AFG Euler-Bernoulli nanobeams is investigated numerically. A consistent softening effects can be obtained for both LσD- and εD-TPNIMs. The results from current work may provide useful guidelines for designing and optimizing AFG Euler-Bernoulli beam based nano instruments.

Direct Lagrangian-based FSI formulation for seismic analysis of reinforced concrete circular liquid-containing tanks

  • Erfan Shafei;Changiz Gheyratmand;Saeed Tariverdilo
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.165-176
    • /
    • 2024
  • In this study, a direct Lagrangian-based three-dimensional computational procedure is developed to evaluate the seismic performance of reinforced concrete liquid-containing circular tanks (RC-LCT). In this approach, fluid-structure interaction (FSI), material nonlinearity, and liquid-structure large deformations are formulated realistically. Liquid is modeled using Mie-Grüneisen equation of state (EOS) in compressible form considering the convective and impulsive motions of fluid. The developed numerical framework is validated based on a previous study. Further, nonlinear analyses are carried out to assess the seismic performance of RC-LCT with various diameter-to-liquid height ratios ranging from 2.5 to 4.0. Based on observations, semi-deep tanks (i.e., D/Hl=2.5) show low collapse ductility due to their shear failure mode while shallow tanks (i.e., D/Hl=4.0) behave in a more ductile manner due to their dominant wall membrane action. Furthermore, the semi-deep tanks provide the least over-strength and ductility due to their catastrophic failure with little energy dissipation. This study shows that LCTs can be categorized as between immediately operational and life safety levels and therefore a drift limiting criterion is necessary to prevent probable damages during earthquakes.

Developing a framework to integrate convolution quadrature time-domain boundary element method and image-based finite element method for 2-D elastodynamics

  • Takahiro Saitoh;Satoshi Toyoda
    • Advances in Computational Design
    • /
    • v.9 no.3
    • /
    • pp.213-227
    • /
    • 2024
  • In this study, a framework for coupling of the convolution quadrature time-domain boundary element method (CQBEM) and image-based finite element method (IMFEM) is presented for 2-D elastic wave propagation. This coupling method has three advantages: 1) the finite element modeling for heterogeneous areas can be performed without difficulties by using digital data for the analysis model, 2) wave propagation in an infinite domain can be calculated with high accuracy by using the CQBEM, and 3) a small time-step size can be used. In general, a small time-step size cannot be used in the classical time-domain boundary element method. However, the CQBEM used in this analysis can address a small time-step size. This makes it possible to couple the CQBEM and image-based FEM which require a small-time step size. In this study, the formulation and validation of the pro-posed method are described and confirmed by solving fundamental elastic wave scattering problems. As a numerical example, elastic wave scattering in inhomogeneous media is demonstrated using the proposed coupling method.

Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building (철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소)

  • Choun Young-Sun;Lee Hong-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.93-103
    • /
    • 2006
  • It is absolutely essential that safety assessment of the containment buildings during service life because containment buildings are last barrier to protect radioactive substance due to the accidents. Therefore, this study describes an enhanced degenerated shell finite element(FE) which has been developed for nonlinear FE analysis of reinforced concrete(RC) containment buildings with elasto-plastic material model. For the purpose of the material nonlinear analysis, Drucker-Prager failure criteria is adapted in compression region and material parameters which determine the shape of the failure envelop are derived from biaxial stress tests. Reissner-Mindlin(RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method. Finally, the performance of the present shell element to analysis RC containment buildings is tested and demonstrated with several numerical examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

3-Dimensional Finite Element Analysis of Thermoforming Processes (열성형공정의 3차원 유한요소해석)

  • G.J. Nam;D.S. Son;Lee, J.W.
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.18-27
    • /
    • 1999
  • Predicting the deformation behaviors of sheets in thermoforming processes has been a daunting challenge due to the strong nonlinearities arising from very large deformations, mold-polymer contact condition and hyperelasticity constitutive equations. Nonlinear numerical analysis is always required to face this challenge especially for realistic processing conditions. In this study a 3-D algorithm and the membrane approximation are developed for thermoforming processes. The constitutive equation is expressed in terms of the 2nd Piola-Kirchhoff stress tensor and the Cauchy-Green deformation tensor. The 2-term Mooney-Rivlin model is used for the material model equation. The algorithm is established by the finite element formulation employing the total Lagrangian coordinate. The deformation behavior and the stress distribution results of 3-D algorithm with various point boundary conditions are compared to those of the membrane approximation algorithm. Also, the slip boundary condition and the no-slip boundary condition are applied for the systems that have molds. Finally, the effect of sheet temperatures on the final thickness distribution is investigated for the ABS material.

  • PDF

Solving Probability Constraint in Robust Optimization by Minimizing Percent Defective (불량률 최소화를 통한 강건 최적화의 확률제한조건 처리)

  • Lee, Kwang Ki;Park, Chan Kyoung;Kim, Geun Yeon;Lee, Kwon Hee;Han, Sang Wook;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.975-981
    • /
    • 2013
  • A robust optimization is only one of the ways to minimize the effects of variances in design variables on the objective functions at the preliminary design stage. To predict the variances and to formulate the probabilistic constraints are the most important procedures for the robust optimization formulation. Though several methods such as the process capability index and the six sigma technique were proposed for the prediction and formulation of the variances and probabilistic constraints, respectively, there are few attempts using a percent defective which has been widely applied in the quality control of the manufacturing process for probabilistic constraints. In this study, the robust optimization for a lower control arm of automobile vehicle was carried out, in which the design space showing the mean and variance sensitivity of weight and stress was explored before robust optimization for a lower control arm. The 2nd order Taylor expansion for calculating the standard deviation was used to improve the numerical accuracy for predicting the variances. Simplex algorithm which does not use the gradient information in optimization was used to convert constrained optimization into unconstrained one in robust optimization.

Finding the One-to-One Optimum Path Considering User's Route Perception Characteristics of Origin and Destination (Focused on the Origin-Based Formulation and Algorithm) (출발지와 도착지의 경로인지특성을 반영한 One-to-One 최적경로탐색 (출발지기반 수식 및 알고리즘을 중심으로))

  • Shin, Seong-Il;Sohn, Kee-Min;Cho, Chong-Suk;Cho, Tcheol-Woong;Kim, Won-Keun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.99-110
    • /
    • 2005
  • Total travel cost of route which connects origin with destination (O-D) is consist of the total sum of link travel cost and route perception cost. If the link perception cost is different according to the origin and destination, optimal route search has limitation to reflect the actual condition by route enumeration problem. The purpose of this study is to propose optimal route searching formulation and algorithm which is enable to reflect different link perception cost by each route, not only avoid the enumeration problem between origin and destination. This method defines minimum unit of route as a link and finally compares routes using link unit costs. The proposed method considers the perception travel cost at both origin and destination in optimal route searching process, while conventional models refect the perception cost only at origin. However this two-way searching algorithm is still not able to guarantee optimum solution. To overcome this problem, this study proposed an orign based optimal route searching method which was developed based on destination based optimal perception route tree. This study investigates whether proposed numerical formulas and algorithms are able to reflect route perception behavior reflected the feature of origin and destination in a real traffic network by the example research including the diversity of route information for the surrounding area and the perception cost for the road hierarchy.

On the Solution Method for the Non-uniqueness Problem in Using the Time-domain Acoustic Boundary Element Method (시간 영역 음향 경계요소법에서의 비유일성 문제 해결을 위한 방법에 관하여)

  • Jang, Hae-Won;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • The time-domain solution from the Kirchhoff integral equation for an exterior problem is not unique at certain eigen-frequencies associated with the fictitious internal modes as happening in frequency-domain analysis. One of the solution methods is the CHIEF (Combined Helmholtz Integral Equation Formulation) approach, which is based on employing additional zero-pressure constraints at some interior points inside the body. Although this method has been widely used in frequency-domain boundary element method due to its simplicity, it was not used in time-domain analysis. In this work, the CHIEF approach is formulated appropriately for time-domain acoustic boundary element method by constraining the unknown surface pressure distribution at the current time, which was obtained by setting the pressure at the interior point to be zero considering the shortest retarded time between boundary nodes and interior point. Sound radiation of a pulsating sphere was used as a test example. By applying the CHIEF method, the low-order fictitious modes could be damped down satisfactorily, thus solving the non-uniqueness problem. However, it was observed that the instability due to high-order fictitious modes, which were beyond the effective frequency, was increased.

Vibration Analysis of Quadrangular Plate having Attachments by the Assumed Mode Method (Assumed Mode Method에 의한 부가물(附加物)을 갖는 임의(任意) 사각형(四角形) 평판(平板)의 진동해석(振動解析))

  • S.Y. Han;Y.C. Huh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.116-125
    • /
    • 1995
  • In ship and of offshore structures, there exist many local panels of various shapes having many kinds of attachments reducible to damped spring-mass systems. For the vibration analysis of panels, analytical methods such as Rayleight-Ritz method or the assumed mode method can be efficiently applied. There have been many studies on the vibration analysis of rectangular panels using the analytical methods but relatively few for arbitrary shape panels. An efficient formulation based on the assumed mode method is presented for the vibration analysis of an arbitrary quadrangular plate having concentrated masses, supporting springs such as pillars and spring-mass systems. In the formulation, the natural coordinate system is used for the efficient treatment of an arbitrary quadrangular shape. Through some numerical calculations, accuracy and efficiency of the presented method are shown.

  • PDF