• Title/Summary/Keyword: numerical formulation

Search Result 1,594, Processing Time 0.022 seconds

Optimization of Ingredient for the Preparation of Asparagus cochinchinensis Makgeolli by Response Surface Methodology (반응 표면 분석을 이용한 천문동 첨가 막걸리 재료 혼합물의 최적화)

  • Kim, Ji Young;Park, Geum Soon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.6
    • /
    • pp.799-809
    • /
    • 2013
  • This study was performed to determine the optimal composition of a makgeolli administered nuruk, water and Asparagus cochinchinensis. The experiment was designed base on BBD (box-behnken design), and an evaluation was carried out by means of RSM (response surface methodology), which included 15 experimental points with 3 replicates for the three independent variables nuruk, water and Asparagus cochinchinensis. The nuruk levels were tested in a range of 10~30 g, the water levels in a range 120~180% and Asparagus cochinchinensis was tested within a range of 2~6% by the weight of cooked-rice. Using the F-test, brix and appearance were expressed as a linear model, whereas the pH, acidity, DPPH radical scavenging, L-value, savory taste, taste, fresh aroma, after swallow and overall acceptability were expressed as a quadratic model. Increased amount of Asparagus cochinchinensis led to the reduction of the sensory scores for appearance, flavor, taste, texture and overall quality. The optimum formulation by numerical and graphical method were similar: nuruk 24.50 g, water 174.95% and Asparagus cochinchinensis 2.40%.

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I: Formulation and characteristics of the methods

  • Rezaiee-Pajand, M.;Ghalishooyan, M.;Salehi-Ahmadabad, M.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.849-878
    • /
    • 2013
  • This paper consists of two parts, which broadly examines solution techniques abilities for the structures with geometrical nonlinear behavior. In part I of the article, formulations of several well-known approaches will be presented. These solution strategies include different groups, such as: residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control, modified normal flow, and three-parameter ellipsoidal, hyperbolic, and polynomial schemes. For better understanding and easier application of the solution techniques, a consistent mathematical notation is employed in all formulations for correction and predictor steps. Moreover, other features of these approaches and their algorithms will be investigated. Common methods of determining the amount and sign of load factor increment in the predictor step and choosing the correct root in predictor and corrector step will be reviewed. The way that these features are determined is very important for tracing of the structural equilibrium path. In the second part of article, robustness and efficiency of the solution schemes will be comprehensively evaluated by performing numerical analyses.

Evaluation of stress intensity factor for a crack normal to bimaterial interface using cubic isoparametric finite elements (3차 등매개 유한요소를 이용한 이종재료 접합면에 수직인 균열의 응력확대계수 평가)

  • Lim, Won-Gyun;Jeong, Gyu-Cheol;Song, Chi-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.206-214
    • /
    • 1998
  • When a crack meets bimaterial interface stress singularity depends on the elastic constants of the adjacent materials. In the present study we are going to describe the finite element formulation for problems with a crack to be embedded in the stiffer material$({\mu}_2/{\mu}_1)$. The cubic isoparametric singular element, represented by adequately shifting the mid-side nodes adjacent to the crack tip is constructed to enclose the crack tip. An alternative method to obtain the optimal position of the mid-side nodes of cubic isoparametric elements is presented. In addition, a proper definition for the stress intensity factors of a crack normal to bimaterial interface is provided. It is based upon near a tip displacement solutions. Models for numerical analysis are two dimensional elastic bodies with a through crack under plain strain. The results obtained are compared with the previous solutions.

Numerical Analysis of Incompressible Viscous Flow with Free Surface Using Pattern Filling and Refined Flow Field Regeneration Techniques (형상충전기법과 세분화된 유동장 재생성기법을 이용한 자유표면을 가진 비압축성 점성유동의 수치적 모사)

  • Jeong, Jun-Ho;Yang, Dong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.933-944
    • /
    • 1996
  • In this paper, two new techniques, the pattern filling and the refined flow field regeneration, based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible viscous flow with free surfaces. The gorerning equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and Newton-Raphson methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the pattern filling technique to select an adequate pattern among five filling patterns at each quadrilateral control volume. By the refined flow field regeneration technique, the new flow field which renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. Using the new thchniques to be developed, the dam-breaking problem has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

Optimal Design of Cylindrically Laminated Composite Shells for Strength (강도를 고려한 원통형 복합재료 구조물의 최적설계)

  • Kim, Chang-Wan;Hwang, Un-Bong;Park, Hyeon-Cheol;Shin, Dae-Sik;Park, Ui-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.775-787
    • /
    • 1996
  • An optimization procedure is proposed for the design of cylindrically laminated composite shell having midplane symmetry and subjected to axial force, torsion and internal pressure. Tsai-Wu and Tsai-Hill failure criteria are taken as objective functions. The stacking sequence represents the design variable. The optimal design formulation based on state space method is adopted and solution proccedure is described with the emphasis on the method of calculations of the design sensitivities. A gradient projection algorithm is employed for the optimization process. Numerical results are presented for the several test problems.

Elasto-plastic Loading-unloading Nonlinear Analysis of Frames by Local Parameter Control (국부변수 조절을 통한 프레임의 탄소성 하중-제하 비선헝 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.435-444
    • /
    • 2001
  • Even todays, accurate and efficient algorithms for the large deformation analysis of elastoplastic frame structures lack due to the complexities of kinematics, material nonlinearities and numerical methods to cater for. The author suggests appropriate beam element based upon the incremental formulation from the 3D rod theory where Cauchy stress and engineering strain are variables to incorporate plasticity equations so that objectivity may be satisfied. A rectum mapping methods which can integrate and satisfy yield criteria efficiently is suggested and a continuation method which has global convergency and quadratic speed is developed as well. leading-unloading example problems are tested and the ideas are proved to be valuable.

  • PDF

The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites

  • Han, Fei;Cui, Junzhi;Yu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.231-250
    • /
    • 2008
  • The statistical two-order and two-scale method is developed for predicting the mechanics parameters, such as stiffness and strength of core-shell particle-filled polymer composites. The representation and simulation on meso-configuration of random particle-filled polymers are stated. And the major statistical two-order and two-scale analysis formulation is briefly given. The two-order and two-scale expressions for the strains and stresses of conventionally strength experimental components, including the tensional or compressive column, the twist bar and the bending beam, are developed by means of their classical solutions with orthogonal-anisotropic coefficients. Then a new effective mesh generation algorithm is presented. The mechanics parameters of core-shell particle-filled polymer composites, including the expected stiffness parameters, minimum stiffness parameters, and the expected elasticity limit strength and the minimum elasticity limit strength, are defined by means of the stiffness coefficients and elasticity strength criterions for core, shell and matrix. Finally, the numerical results for predicting both stiffness and elasticity limit strength parameters are compared with the experimental data.

On-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures

  • Lei, Ying;Wang, Longfei;Lu, Lanxin;Xia, Dandan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.789-797
    • /
    • 2017
  • Recently, some integrated structural identification/damage detection and reliability evaluation of structures with uncertainties have been proposed. However, these techniques are applicable for off-line synthesis of structural identification and reliability evaluation. In this paper, based on the recursive formulation of the extended Kalman filter, an on-line integration of structural identification/damage detection and reliability evaluation of stochastic building structures is investigated. Structural limit state is expanded by the Taylor series in terms of uncertain variables to obtain the probability density function (PDF). Both structural component reliability with only one limit state function and system reliability with multi-limit state functions are studied. Then, it is extended to adopt the recent extended Kalman filter with unknown input (EKF-UI) proposed by the authors for on-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures subject to unknown excitations. Numerical examples are used to demonstrate the proposed method. The evaluated results of structural component reliability and structural system reliability are compared with those by the Monte Carlo simulation to validate the performances of the proposed method.

A Study of the Optimization of White Pan Bread added with Wheat Sprout Powder (밀싹분말을 첨가한 식빵의 최적화 연구)

  • Joo, Shin-Youn;Park, Jong-Dae;Choi, Yun-Sang;Sung, Jung-Min
    • Culinary science and hospitality research
    • /
    • v.24 no.3
    • /
    • pp.1-14
    • /
    • 2018
  • The purpose of this study was to determine the optimization mixing ratio of wheat sprout powder (WSP) and hemicellulase for the preparation of white pan bread. Using a response surface methodology, independent variables were WSP and hemicellulase. Dependent variables were physicochemical properties, antioxidant properties and sensory evaluation. Water binding capacity of dough increased with increasing WSP. Color value showed positive correlations with WSP. L value decreased and a, b values increased as WSP increased. The adjusted determination coefficient of texture analysis was calculated to be 0.7230~0.9446 having the p-value less than 0.1. Specific volume of bread showed a positive correlation with hemicellulase and a negative correlation with WSP. DPPH radical scavenging activity and total polyphenol were represented by a linear model and showed positive correlations with WSP. Sensory evaluation were represented by a quadratic model. In conclusion, the optimal formulation for WSP added bread, as assessed by numerical and graphical optimization methods, was WSP 2.36%, hemicellulase 0.069% per wheat flour 100 g. The above results indicate that WSP can be used as health-oriented material in the bread industry. This is also expected to meet demands of consumers who are in the pursuit of healthy food.

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.