• Title/Summary/Keyword: numerical formulation

Search Result 1,594, Processing Time 0.035 seconds

Customized Model of Cold Chain Logistics Considering Hypergeometric Distribution

  • Chen, Xing;Chuluunsukh, Anudari;Jang, Jun-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.5
    • /
    • pp.37-54
    • /
    • 2021
  • In this study, a customized model (CM) for the efficient operation of cold chain logistics considering the hypergeometric distribution is proposed. The CM focuses on the segmentation market of ready-to-eat foods and juices made from fresh materials. Companies should determine the amount of production by predicting consumer preferences and quantity to ensure high-efficiency production. The CM is represented as a mathematical formulation and implemented using the genetic algorithm (GA). Addition, the relative weights of CM are calculated. Further, the calculated weights are applied to the GA. In the numerical experiment, hypergeometric distribution is used to calculate the relative weights between the range of production quantities and the customized amount. Experiment results are the values of relative weights and the comparison results by average values of handling cost, total cost and CPU time. Finally, the significance of this study is summarized and a future research direction is remarked in conclusion.

Development of an analytical method for optimum design of reinforced concrete beams considering both flexural and shear effects

  • Zivari, Ahmad;Habibi, Alireza;Khaledy, Nima
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Optimization is an important subject which is widely used in engineering problems. In this paper, an analytical method is developed for optimum design of reinforced concrete beams considering both flexural and shear effects. A closed-form formulation is derived for optimal height and rebar of beams. The total material cost of steel and concrete is considered as the objective function which is minimized during the optimization process. The ultimate flexural and shear capacities of the beam are considered as the main constraints. The ultimate limit state is considered for deriving the relations for flexural capacity of the beam. The design requirements are considered according to the item 9 of the Iranian National Building. Analytical formulas and some curves are proposed to be used for optimum design of RC beams. The proposed method can be used to perform the optimization of RC beams without the need of any prior knowledge in optimization. Also, the results of the studied numerical example show that the proposed method results in a better design comparing with the other methods.

Size-dependent vibration analysis of laminated composite plates

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.337-349
    • /
    • 2019
  • The size-dependent vibration analysis of a cross-/angle-ply laminated composite plate when embedded on the Pasternak elastic foundation and exposed to an in-plane magnetic field are investigated by adopting an analytical eigenvalue approach. The formulation, which is based on refined-hyperbolic-shear-deformation-plate theory in conjunction with the Eringen Nonlocal Differential Model (ENDM), is tested against considering problems for which numerical/analytical solutions available in the literature. The findings of this study demonstrated the role of magnetic field, size effect, elastic foundation coefficients, geometry, moduli ratio, lay-up numbers and fiber orientations on the nonlocal frequency of cross-/angle-ply laminated composite plates.

Effect of delamination on vibration characteristic of smart laminated composite plate

  • Shankar, Ganesh;Varun, Jayant Prakash;Mahato, P.K.
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.10-17
    • /
    • 2019
  • This study is concerned with a numerical analysis based on the finite element method to describe the effect of midplane delamination in smart laminated composite plate structures. A new finite element model for centrally located delamination and healthy section was developed and coded in Matlab. The transient analysis of delaminated composite plate with integrated Active Fiber Composite (AFC) was investigated in the present article. The formulation of the governing equation was based on the minimum total potential energy approach. The Newmark time integration technique was employed to solve the differential equations. A parametric study on the effects of boundary conditions and AFC patch location, in presence of delamination on the laminated plate were studied.

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent

  • Othman, Mohamed I.A.;Zidan, Magda E.M.;Mohamed, Ibrahim E.A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • The present paper attempts to investigate the propagation of plane waves in an isotropic elastic medium under the effect of initial stress and temperature-dependent properties. The modulus of elasticity is taken as a linear function of the reference temperature. The formulation is applied under the thermoelasticity theory with dual-phase-lag; the normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress, and the strain components. Numerical results for the field quantities are given in the physical domain and illustrated graphically. Comparisons are made with the results predicted by different theories (Lord-Shulman theory, the classical coupled theory of thermoelasticity and the dual-phase-lag model) in the absence and presence of the initial stress as well as the case where the modulus of elasticity is independent of temperature.

Advanced Transverse Wave Approach for MM-Wave Analysis of Planar Antennas applied in 5G-Technology

  • Ayari, Mohamed;Touati, Yamen El;Altowaijri, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.295-299
    • /
    • 2022
  • In this paper, a fast numerical electromagnetic (EM) method based on the transverse wave formulation called-up Advanced Transverse Wave Approach (A-TWA) is presented. An appropriate 5G antenna is designed, simulated and investigated in the context of Millimeter-Wave Wireless Communication Systems. The obtained simulation results are found in good agreement with literature. Such a method can provide for the simulators a great library integrating the most complexly and sensitively geometry elements that can have a huge impact on the applications supported by new wireless technologies.

Machine learning for structural stability: Predicting dynamics responses using physics-informed neural networks

  • Li, Zhonghong;Yan, Gongxing
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.419-432
    • /
    • 2022
  • This article deals with the vibrational response of a nanobeam made of bi-directional FG materials which is modeled via nonlocal strain gradient theory along with HSDT. Also, the nanobeam is placed on a Winkler-Pasternak foundation and is under axial mechanical loading. By using the variational energy method, the formulation and end conditions are obtained. Then, DSC-IM, as the numerical solution procedure is employed to extract the results. The material properties of the nanobeam are FG which varies in two directions with in exponential manner. The results from DDN are verified by using other papers. Lastly, a thorough parametric investigation is presented to investigated the effect of different parameters.

Direct calculation of interface warping functions for considering longitudinal discontinuities in beams

  • Lee, Dong-Hwa;Kim, Hyo-Jin;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.625-643
    • /
    • 2021
  • In this paper, we present a new method to calculate interface warping functions for the analysis of beams with geometric and material discontinuities in the longitudinal direction. The classical Saint Venant torsion theory is extended to a three-dimensional domain by considering the longitudinal direction. The interface warping is calculated by considering both adjacent cross-sections of a given interface. We also propose a finite element procedure to simultaneously calculate the interface warping function and the corresponding twisting center. The calculated interface warping functions are employed in the continuum-mechanics based beam formulation to analyze arbitrary shape cross-section beams with longitudinal discontinuities. Compared to the previous work by Yoon and Lee (2014a), both geometric and material discontinuities are considered with fewer degrees of freedom and higher accuracy in beam finite element analysis. Through various numerical examples, the effectiveness of the proposed interface warping function is demonstrated.

Time-dependent simplified spherical harmonics formulations for a nuclear reactor system

  • Carreno, A.;Vidal-Ferrandiz, A.;Ginestar, D.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3861-3878
    • /
    • 2021
  • The steady-state simplified spherical harmonics equations (SPN equations) are a higher order approximation to the neutron transport equations than the neutron diffusion equation that also have reasonable computational demands. This work extends these results for the analysis of transients by comparing of two formulations of time-dependent SPN equations considering different treatments for the time derivatives of the field moments. The first is the full system of equations and the second is a diffusive approximation of these equations that neglects the time derivatives of the odd moments. The spatial discretization of these methodologies is made by using a high order finite element method. For the time discretization, a semi-implicit Euler method is used. Numerical results show that the diffusive formulation for the time-dependent simplified spherical harmonics equations does not present a relevant loss of accuracy while being more computationally efficient than the full system.