• Title/Summary/Keyword: numerical errors

Search Result 873, Processing Time 0.03 seconds

Range Estimation Algorithm Based on Triangulation Using Angle Measurements (각도 측정치를 이용한 삼각 측량법 기반 거리 추정 알고리즘)

  • Kang, Tae Young;Moon, Kyujin;Lee, Yong-Seon;Choi, Sung-Ho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • The remaining range between missile and target can be used to calculate the guidance command as well as to determine the explosion time of the warhead. Since the range, however, is not directly measured by on-board sensors of the missile, it is usually estimated by filter-based techniques using angle-only measurements. Conventional filter-based techniques are complex and require huge computation. In this paper, we propose a range estimation algorithm based on the geometrical triangulation principle for two points of missiles and a target. The proposed algorithm has a simple structure but the accuracy is largely dependent on the measurement errors. To improve the accuracy of estimation, Digital Fading Memory Filter (DFMF) is applied. The performance of the proposed algorithm is analyzed through numerical simulations.

Pilot Emitting AF Relays and Its Applications to Beamforming (파일럿 송출 AF 중계기와 이를 이용한 빔포밍 기법)

  • Joung, Jin-Gon;Lee, Chang-Soo;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1165-1171
    • /
    • 2008
  • In this paper, a pilot emitting amplify-and-forward relay and its beamforming schemes, OBF (overall beamforming) and RBF (hop-by-hop beamforming), are proposed for two-hop relaying systems. The OBF performs beamforming with respect to a overall channel from a source node (SN) to a destination node (DN) through a relay node (RN), while the proposed RBF performs two independent beamformings: from the SN to the RN and from the RN to the DN. From our analytic and numerical results, it is shown that bit-error-rate (BER) performance of the proposed RBF is better than that of the OBF scheme since the RBF system can estimate channel more proper than the CBF system, which is verified by deriving and comparing the mean square errors of the channel estimation.

Generation of Subdivision Surface and First-order Shear Deformable Shell Element Based on Loop Subdivision Surface (서브디비전의 다중해상도 기능을 이용한 곡면의 모델링과 유한요소 해석)

  • 김형길;서홍석;조맹효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2004
  • In the present study, Loop scheme is applied to generate smooth surfaces. To be consistent with the limit points of target surface, the initial sampling points are properly rearranged. The pointwise errors of curvature and position in the sequence of subdivision process are evaluated in the Loop subdivision scheme. A first-order shear deformable Loop subdivision triangular element which can handle transverse shear deformation of moderately thick shell are developed. The developed element is more general than the previous one based on classical shell theory, since the new one includes the effect of transverse shear deformation and has standard six degrees of freedom per node. The quartic box spline function is used as interpolation basis function. Numerical examples for the benchmark static shell problems are analyzed to assess the performance of the developed subdivision shell element and locking trouble.

Computation of the Higher Order Derivatives of Energy Release Rates in a Multiply Cracked Structure for Probabilistic Fracture Mechanics and Size Effect Law (확률론적 파괴역학 및 Size Effect Law에 적용을 위한 다중 균열 구조물에서의 에너지 해방률의 고차 미분값 계산)

  • Hwang, Chan-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.391-399
    • /
    • 2008
  • In this paper, we further generalize the work of Lin and Abel to the case of the first and the second order derivatives of energy release rates for two-dimensional, multiply cracked systems. The direct integral expressions are presented for the energy release rates and their first and second order derivatives. The salient feature of this numerical method is that the energy release rates and their first and second order derivatives can be computed in a single analysis. It is demonstrated through a set of examples that the proposed method gives expectedly decreasing, but acceptably accurate results for the energy release rates and their first and second order derivatives. The computed errors were approximately 0.5% for the energy release rates, $3\sim5%$ for their first order derivatives and $10\sim20%$ for their second order derivatives for the mesh densities used in the examples. Potential applications of the present method include a universal size effect model and a probabilistic fracture analysis of cracked structures.

A Numerical Study of Mesoscale Model Initialization with Data Assimilation

  • Min, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.342-353
    • /
    • 2014
  • Data for model analysis derived from the finite volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4) and the Land Data Assimilation System (LDAS) have been utilized in a mesoscale model. These data are tested to provide initial conditions and lateral boundary forcings to the Purdue Mesoscale Model (PMM) for a case study of the Midwestern flood that took place from 21-23 May 1998. The simulated results with fvGCM and LDAS soil moisture and temperature data are compared with that of ECMWF reanalysis. The initial conditions of the land surface provided by fvGCM/LDAS show significant differences in both soil moisture and ground temperature when compared to ECMWF control run, which results in a much different atmospheric state in the Planetary Boundary Layer (PBL). The simulation result shows that significant changes to the forecasted weather system occur due to the surface initial conditions, especially for the precipitation and temperature over the land. In comparing precipitation, moisture budgets, and surface energy, not only do the intensity and the location of precipitation over the Midwestern U.S. coincide better when running fvGCM/LDAS, but also the temperature forecast agrees better when compared to ECMWF reanalysis data. However, the precipitation over the Rocky Mountains is too large due to the cumulus parameterization scheme used in the PMM. The RMS errors and biases of fvGCM/LDAS are smaller than the control run and show statistical significance supporting the conclusion that the use of LDAS improves the precipitation and temperature forecast in the case of the Midwestern flood. The same method can be applied to Korea and simulations will be carried out as more LDAS data becomes available.

Analysis on the Planar Bowtie Antenna for IMT-2000 Handset (IMT-2000 핸드셋용 평면형 Bowtie 안테나 해석)

  • Lee, Hee-Suk;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.681-688
    • /
    • 2000
  • In this paper, a planar antenna that is small and light, is designed and analyzed aiming handset antenna of IMT-2000. Employing the Ensemble simulator based on a MoM, design-parameters are found to determine a resonant frequency. Therefore, it is analyzed with the Ensemble simulation and FDTD numerical for resonating at the allocated frequency for IMT-2000 in the fixed antenna dimension of 21$^{\circ}$wing angle that is a design parameter. Analyzing with FDTD method, Though the results of FDTD are very exact, this analysis introduces errors due to the staircasing approximation in the slope of bowtie. To reduce this error, it is divided to 4-ranges where the cell contains the boundary of perfect conductor/free space. Then, each range is calculated by different by different equation, which modify the H-field to add the component of the area and length of the cell filled with free space. Therefore, the modified FDTD algorithm provided with a narrow bandwidth of return loss calculated with a standard FDTD algorithm that can be extended to the desired ranges.

  • PDF

Analytical and Experimental Studies on Splice Sleeves for SD500 Rebars (SD500 철근용 충전식 슬리브 철근이음에 대한 해석 및 실험적 연구)

  • Oh, Young-Hun;Moon, Jeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.165-173
    • /
    • 2013
  • Splice sleeves for HD25 and HD32 rebars with yield strength 500 MPa were studied experimentally and analytically. The shapes of sleeve was examined with nonlinear finite element analyses. A total of 18 specimens were tested with test variables of rebar types, sleeve lengths, mortar compressive strengths, and rebar development lengths. Three identical specimens per each variable were tested in order to prevent any test errors. After tests, numerical studies with a nonlinear finite element method were conducted to evaluate the test results. Experimental studies with 18 specimens showed that the sleeves of this study satisfies the code requirement. It was found that the strength of mortar and the bar development length within the sleeves did not affect to the load-carrying capacity of sleeves.

An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions

  • Nguyen, Phu Tho;Bastidas-Arteaga, Emilio;Amiri, Ouali;Soueidy, Charbel-Pierre El
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.199-213
    • /
    • 2017
  • Chloride penetration is among the main causes of corrosion initiation in reinforced concrete (RC) structures producing premature degradations. Weather and exposure conditions directly affect chloride ingress mechanisms and therefore the operational service life and safety of RC structures. Consequently, comprehensive chloride ingress models are useful tools to estimate corrosion initiation risks and minimize maintenance costs for RC structures placed under chloride-contaminated environments. This paper first presents a coupled thermo-hydro-chemical model for predicting chloride penetration into concrete that accounts for realistic weather conditions. This complete numerical model takes into account multiple factors affecting chloride ingress such as diffusion, convection, chloride binding, ionic interaction, and concrete aging. Since the complete model could be computationally expensive for long-term assessment, this study also proposes model simplifications in order to reduce the computational cost. Long-term chloride assessments of complete and reduced models are compared for three locations in France (Brest, Strasbourg and Nice) characterized by different weather and exposure conditions (tidal zone, de-icing salts and salt spray). The comparative study indicates that the reduced model is computationally efficient and accurate for long-term chloride ingress modeling in comparison to the complete one. Given that long-term assessment requires larger climate databases, this research also studies how climate models may affect chloride ingress assessment. The results indicate that the selection of climate models as well as the considered training periods introduce significant errors for mid- and long- term chloride ingress assessment.

A Study on Damage Effects Assessment for Asphyxiation Accident due to Malfunction of Gas Type Fire Extinguishing System (가스계 소화설비 오작동으로 인한 질식사고의 피해영향 평가)

  • Kim, Eui-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.36-43
    • /
    • 2020
  • Gas system fire extinguishing equipment is a very economically useful facility, but if it is not used for a long period of time after installing the equipment, there is possibility of rupture due to corrosion of containers and operation errors of equipment systems, and this is very dangerous. However, it is impossible to experiment to check whether the equipment is operating normally. If gas is temporarily released into the enclosed space due to rupture and malfunction, it can cause serious human damage due to gas suffocation. In this study, based on the suffocation death accident of gas system fire extinguishing facility, the inflow path of released gas and the possibility of death and time to death were estimated using a 3D scan and FLACS.

The Comparative Study for Property of Learning Effect based on Software Reliability Model using Doubly Bounded Power Law Distribution (이중 결합 파우어 분포 특성을 이용한 유한고장 NHPP모형에 근거한 소프트웨어 학습효과 비교 연구)

  • Kim, Hee Cheul;Kim, Kyung-Soo
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • In this study, software products developed in the course of testing, software managers in the process of testing software test and test tools for effective learning effects perspective has been studied using the NHPP software. The doubly bounded power law distribution model makeup Weibull distribution applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than automatic error that is generally efficient model could be confirmed. This paper, a numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R^2$.