• 제목/요약/키워드: numerical errors

검색결과 874건 처리시간 0.026초

자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 -LMS Feedforward 제어를 이용한 실험적 해석- (Runout Control of Mgenetically Suspended Grinding Spindle - Experimental Analysis of Adaptive LMS Feedforward Control Method -)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.997-1001
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well finished surface, this runout can cause a rotation error amplified by feedback control system. The adaptiveed forward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The electrical runout form the rear sensor target of grind spindle is about 70$\mu\textrm{m}$ with harmonic frequencies. The rotor orbit size in rear bearing is reduced about to 5$\mu\textrm{m}$ due to 1X and 2X rejection by feedforward control.

  • PDF

Model Tracking Dual Stochastic Controller Design Under Irregular Internal Noises

  • Lee Jong-Bok;Cho Yun-Hyun;Ji Tae-Young;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.652-657
    • /
    • 2006
  • Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and 1/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation.

보간법을 이용한 견인 어레이 형상 추정 기법의 성능 개선 (Performance Improvement of Towed Array Shape Estimation Using Interpolation)

  • 박민수;도경철;오원천;윤대희;이충용
    • 한국음향학회지
    • /
    • 제19권3호
    • /
    • pp.72-76
    • /
    • 2000
  • 칼만 필터를 이용한 2차원 견인 배열 (towed may) 형상 추정 기법의 성능을 개선하는 방법을 제안한다. 변위 센서를 이용할 경우, 기존의 칼만 여파기 방법에 의해 추정된 2차원 하이드로폰 수평 좌표는 총 길이가 배열의 길이와 일치하며 등간격 값을 갖게 된다. 이렇게 고정된 수평 좌표를 사용하는 경우 배열의 왜곡 정도가 심화됨에 따라 오차가 증가하게 된다. 이를 개선하기 위해 선형 근사화 방법 또는 스플라인 보간법을 이용하여 발생하는 오차를 줄일 수 있는 방법을 제안하고 컴퓨터 모의 실험을 통해 그 성능을 검증한다.

  • PDF

Effect of Outdated Channel Estimates on Multiple Antennas Multiple Relaying Networks

  • Wang, Lei;Cai, Yueming;Yang, Weiwei;Yan, Wei;Song, Jialei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1682-1701
    • /
    • 2015
  • In this paper, we propose an intergraded unified imperfect CSI model and investigate the joined effects of feedback delay and channel estimation errors (CEE) for two-hop relaying systems with transmit beamforming and relay selection. We derived closed-form expressions for important performance measures including the exact analysis and lower bounds of outage probability as well as error performance. The ergodic capacity is also included with closed-form results. Furthermore, diversity and coding gains based on the asymptotic analysis at high SNRs are also presented, which are simple and concise and provide new analytical insights into the corresponding power allocation scheme. The analysis indicates that delay effect results in the coding gain loss and the diversity order loss, while CEE will merely cause the coding gain loss. Numerical results verify the theoretical analysis and illustrate the system is more sensitive to transmit beamforming delay compared with relay selection delay and also verify the superiority of optimum power allocation. We further investigate the outage loss due to the CEE and feedback delays, which indicates that the effect of the CEE is more influential at low-to-medium SNR, and then it will hand over the dominate role to the feedback delay.

이륜차동구동형로봇의 복합오차를 고려한 기구학적 파라미터 정밀보정기법 (Accurate Calibration of Kinematic Parameters for Two Wheel Differential Drive Robots by Considering the Coupled Effect of Error Sources)

  • 이국태;정창배;정다운;정우진
    • 로봇학회논문지
    • /
    • 제9권1호
    • /
    • pp.39-47
    • /
    • 2014
  • Odometry using wheel encoders is one of the fundamental techniques for the pose estimation of wheeled mobile robots. However, odometry has a drawback that the position errors are accumulated when the travel distance increases. Therefore, position errors are required to be reduced using appropriate calibration schemes. The UMBmark method is the one of the widely used calibration schemes for two wheel differential drive robots. In UMBmark method, it is assumed that odometry error sources are independent. However, there is coupled effect of odometry error sources. In this paper, a new calibration scheme by considering the coupled effect of error sources is proposed. We also propose the test track design for the proposed calibration scheme. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed calibration scheme.

5축 가공의 특이영역에서 공구궤적 오차 - Part I: 궤적오차 모델링 - (Tool-trajectory Error at the Singular Area of Five-axis Machining - Part I: Trajectory Error Modeling -)

  • 소범식;정융호;윤재득
    • 한국CDE학회논문집
    • /
    • 제14권1호
    • /
    • pp.18-24
    • /
    • 2009
  • This paper proposes an analytical method of evaluating the maximum error by modeling the exact tool path for the tool traverse singular region in five-axis machining. It is known that the NC data from the inverse kinematics transformation of 5-axis machining can generate singular positions where incoherent movements of the rotary axes can appear. These lead to unexpected errors and abrupt operations, resulting in scoring on the machined surface. To resolve this problem, previous methods have calculated several tool positions during a singular operation, using inverse kinematics equations to predict tool trajectory and approximate the maximum error. This type of numerical approach, configuring the tool trajectory, requires much computation time to obtain a sufficient number of tool positions in a region. We have derived an analytical equation for the tool trajectory in a singular area by modeling the tool operation into a linear and a nonlinear part that is a general form of the tool trajectory in the singular area and that is suitable for all types of five-axis machine tools. In addition, we have evaluated the maximum tool-path error exactly, using our analytical model. Our algorithm can be used to modify NC data, making the operation smoother and bringing any errors to within tolerance.

배경잡음이 존재하는 얕은 수조 내에서의 USBL 위치추적 알고리즘 적용 가능성 연구 (Study on an USBL Positioning Algorithm in a Shallow Water Tank in Noisy Conditions)

  • 김시문;이판묵;이종무;임용곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.204-209
    • /
    • 2004
  • It is well known fact that acoustic positioning systems are absolutely needed for various underwater operations. According to the distances between their sensors they are classified into three parts: long baseline(LBL), short baseline(SBL), and ultra-short baseline(USBL). Among them the USBL system is widely used because of its simplicity, although it is the most inaccurate. Recently, in order to increase the positioning accuracy, various USBL systems using broadband signal such as MFSK(Multiple Frequency Shift Keying) are produced. However, their positioning accuracy is still limited by background noise and reflected waves. Therefore, there is difficulty in applying the USBL system using MFSK signal in a shallow water with noisy conditions. In order to examine the effect of the noise and wave reflections this paper analyze position errors for various conditions using numerical simulations. The simulation results say that tile SNR must be greater than 20dB and errors in the vertical direction are slightly increased by wave reflections by upper and lower boundaries.

  • PDF

GLONASS 위성 가시성 분석을 위한 방송궤도력 기반 궤도 예측 (Orbit Prediction using Broadcast Ephemeris for GLONASS Satellite Visibility Analysis)

  • 김혜인;박관동
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권2호
    • /
    • pp.199-210
    • /
    • 2009
  • 다양한 위성항법시스템이 개발 중이지만 현재 측위에 사용 가능한 것은 GPS와 GLONASS 뿐이다. 이 연구에서는 GLONASS의 궤도력 중에서 방송궤도력을 이용하여, 위성의 운동을 나타내는 미분방정식을 4차 Runge-Kutta 방법으로 수치적분하여 위성궤도를 예측하고, 그 정 확도를 평가하였다. 생성한 예측지도는 정밀궤도력과 비교하여 정확도를 검증하였는데, 1일간의 예측궤도와 7일간의 예측제도의 3차원 최대오차는 각각 17.4km, 40.1km로 나타났으며, RMS 오차는 각각 14.3km, 15.7km로 나타났다. 또한 예측제도를 이용하여 산출한 가시위성의 개수와 실제관측 결과를 비교하였다. 그 결과, 관측지점의 주변 건물에 의한 영향으로 발생하는 차이를 제외하고 결과가 일치하는 것을 확인하였다.

3차원 어군행동 계측 시스템의 개발과 어군행동의 수직 모델링에 관한 연구 1 . 3차원 어군행동 계측 시스템 - (Studies on the Development of Three-Demensional Positioning System and Numerical Modeling of Fish Behavior I. Three-Demensional Positioning System for Investigating Fish Behavior)

  • 김동수
    • 수산해양기술연구
    • /
    • 제34권1호
    • /
    • pp.21-29
    • /
    • 1998
  • In order to investigate the fish behavior in the water tank, the three dimensional positioning system with two CCD cameras was designed. The positioning system was tested at the vertical circulation water channel with observational part of 1,500L$\times$1,500W$\times$500H mm and the circular water tank with 2,050ø sub(1)$\times$1,850ø sub(2)$\times$400H mm. The observational error of vertical direction was larger than that of horizontal direction, and the observational error became enlarged in all directions according to the increase of depth and distance from the visual axis. The maximum observational errors of horizontal and vertical directions at the circulation channel ranged from -1.7 cm to 1.8 cm (2.4%) and zero to 2.1 cm (4.2%), respectively. But the errors of horizontal and vertical directions at the circular tank ranged from -1.3 cm to 1.3 cm (1.3%) and zero to 1.3 cm (3.3%), respectively.

  • PDF

Goal-oriented multi-collision source algorithm for discrete ordinates transport calculation

  • Wang, Xinyu;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2625-2634
    • /
    • 2022
  • Discretization errors are extremely challenging conundrums of discrete ordinates calculations for radiation transport problems with void regions. In previous work, we have presented a multi-collision source method (MCS) to overcome discretization errors, but the efficiency needs to be improved. This paper proposes a goal-oriented algorithm for the MCS method to adaptively determine the partitioning of the geometry and dynamically change the angular quadrature in remaining iterations. The importance factor based on the adjoint transport calculation obtains the response function to get a problem-dependent, goal-oriented spatial decomposition. The difference in the scalar fluxes from one high-order quadrature set to a lower one provides the error estimation as a driving force behind the dynamic quadrature. The goal-oriented algorithm allows optimizing by using ray-tracing technology or high-order quadrature sets in the first few iterations and arranging the integration order of the remaining iterations from high to low. The algorithm has been implemented in the 3D transport code ARES and was tested on the Kobayashi benchmarks. The numerical results show a reduction in computation time on these problems for the same desired level of accuracy as compared to the standard ARES code, and it has clear advantages over the traditional MCS method in solving radiation transport problems with reflective boundary conditions.