• Title/Summary/Keyword: numerical efficiency

Search Result 3,177, Processing Time 0.034 seconds

Numerical Analysis Research for Evaluating the Energy Efficiency of Electric Vehicles (전기자동차 에너지효율 평가를 위한 수치해석 연구)

  • Mingi Choi
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • This paper is a numerical analysis study for evaluating the energy efficiency of electric vehicles. Currently, the methods for testing and evaluating the energy consumption efficiency of electric vehicles have limitations such as resources and time. Therefore, there is a need for research on developing models to predict the energy consumption efficiency of electric vehicles. In this study, a numerical analysis research is conducted to predict the energy efficiency of electric vehicles using a vehicle dynamics numerical analysis model. To validate the accuracy of the simulation model, it is compared the results of dynamometer tests with the simulation results and used the Unified Diagnostic Services (UDS) protocol to acquire internal data from the electric vehicle. It is ensured the reliability of the simulation model by comparing data such as motor speed, battery voltage, current, state of charge (SOC), regenerative braking power generation, and total driving distance of the test vehicle with dynamometer test data and simulation model results.

Numerical analysis of injection molding for filling efficiency on ultrasonic process

  • Lee, Jae-Yeol;Kim, Nak-Soo;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.79-88
    • /
    • 2008
  • In this study, we focus on the improvement of the filling efficiency in injection molding by application of ultrasonic vibration. While studies about the filling efficiency of typical filling processes in the injection molding have been widely performed, there have been only few studies about the filling efficiency of an ultrasonic process. The effect of the ultrasonic vibration is an important process condition, which influences the flow characteristics of polymer melt. This new condition even affects well-known injection conditions such as cavity pressure, injection temperature and mold temperature. For this study, we carried out a numerical analysis by appropriate modeling and analysis of the ultrasonic process in the filling process. To verify this numerical analysis, we compared the numerical results with the experimental data. Also, we analyzed the filling process in a thin cavity using this numerical analysis. To understand the flow characteristics of polymer melt in the ultrasonic process, we substituted real and complex vibration conditions with simplified and classified conditions according to the position of vibrating cavity surfaces and the phase difference between two opposing cavity surfaces. We also introduced MFR (melt flow ratio) as a new index to estimate the filling efficiency in the ultrasonic process.

A NUMERICAL STUDY ON PLATE HEAT EXCHANGER PERFORMANCE BY GAP BETWEEN CHEVRON PLATES (판 사이 간격에 따른 판형 열교환기 성능에 관한 수치해석 연구)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.347-354
    • /
    • 2009
  • Plate Heat Exchnager(PHE) has recently become widely adopted for cogeneration systems owing to its small installation space and high thermal efficiency. The gap between plates can be changed depending on its assemble type, i.e. gasket or blazing. The gap is known to affect thermal efficiency and working pressure drop in PHE with complicated geometrical features. Numerical simulation techniques have been developed to deal with PHE with complex configuration of chevron plates. The present study is aiming at identifying the gap effect on pressure drop and thermal efficiency of the PHE. The numerical simulation results show that the gap has relatively large effects on working pressure drop than thermal efficiency in performance of PHE.

  • PDF

Evaluation of Flowfield and Flow Losses insied Axial Turbomachinery Using Numerical Calculation [Evaluation of Tip Leakage Loss and Reduction of Efficiency by Tip Clearance] (수치계산에 의한 축류터보기계의 유동장과 유동온실의 평가 III [회전차 익말단의 누설손실과 효율저하에 대한 평가])

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.240-247
    • /
    • 1998
  • Leakage vortices formed near blade tip causes an increase of total pressure loss near casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the less distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and aprroximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

Evaluation of Tip Leakage Loss and Reduction of Efficiency of Axial Turbomachinery Using Numerical Calculation (수치계산에 의한 축류터보기계의 회전차 익말단의 누설손실과 효율저하에 대한 평가)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.73-80
    • /
    • 1999
  • Leakage vortices formed new blade tip causes an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of the tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated by varying the tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the loss distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

Flow Analysis on the Different Volute Casing in a Centrifugal Fan (원심송풍기 볼류트 케이싱 형상에 따른 내부유동장 평가)

  • Jang, Choon-Man
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.381-385
    • /
    • 2009
  • This paper describes performance characteristics of a centrifugal fan having a different volute casing. The centrifugal fan has a backward blade type, and is used in a refuse collecting system. The flow characteristics inside the components are analyzed by three-dimensional Navier-Stokes analysis, and also compared to the results by experiments. Distributions of pressure and efficiency obtained by numerical simulation has a good agreement with the experimental results. Throughout the numerical simulation of the centrifugal fan, a fan efficiency is increased by decreasing local losses in the blade passage. It is found that the fan efficiency is enhanced by decreasing the distance between the shroud of a impeller and casing. Detailed flow analysis is also analyzed and discussed using the results obtained by numerical simulation.

  • PDF

Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method (적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

VERIFICATION OF FIN EFFICIENCY THEORY FOR THE CIRCULAR FINNED-TUBE HEAT EXCHANGER BY NUMERICAL EXPERIMENT (원형휜-원형관 열교환기의 휜효율 이론에 관한 수치적 검증)

  • Kang, H.C.;Lim, B.B.;Lee, J.W.;Chang, B.C.;Ahn, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.137-142
    • /
    • 2008
  • The purpose of the present study is to investigate the convective heat transfer characteristics and the validity of fin efficiency of the circular finned-tube heat exchanger by using commercial CFD code. The heat transfer coefficient obtained by using the laminar model was 22% overestimated to the experimental data. The fin surface temperature compared with the experimental data measured by the liquid crystal method. The fin efficiency by the present numerical experiment, defined as normalized and averaged fin surface temperature, was greater than the theoretical fin efficiency and the difference is increased at high value of the factor m.

  • PDF

VERIFICATION OF FIN EFFICIENCY THEORY FOR THE CIRCULAR FINNED-TUBE HEAT EXCHANGER BY NUMERICAL EXPERIMENT (원형휜-원형관 열교환기의 휜효율 이론에 관한 수치적 검증)

  • Kang, H.C.;Lim, B.B.;Lee, J.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2009
  • The purpose of the present study is to investigate the convective heat transfer characteristics and the validity of fin efficiency of the circular finned-tube heat exchanger by using commercial CFD code. The heat transfer coefficient obtained by using the laminar model was 22% overestimated to the experimental data. The fin surface temperature compared with the experimental data measured by the liquid crystal method. The fin efficiency by the present numerical experiment, defined as normalized and averaged fin surface temperature, was greater than the theoretical fin efficiency and the difference is increased at high value of the factor $mr{\phi}$.

Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (III) - Evaluation of Tip Leakage Loss and Reduction of Efficiency near Blade Tip Clearance Region of a Rotor - (축류 회전차 익말단 틈새유동에 대한 수치해석 (III) - 회전차 익말단의 누설손실과 효율저하에 대한 평가 -)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1113-1120
    • /
    • 1999
  • Leakage vortices fonned near the blade tip cause an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and the of attack on the leakage vortex and overall performance, and the los9 distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss due to the tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency due to the tip leakage flow.