• Title/Summary/Keyword: numerical calibration

Search Result 245, Processing Time 0.024 seconds

Calibration of Parallel Manipulators using a New Measurement Device (새로운 측정장비를 이용한 병렬구조 로봇의 보정에 관한)

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1494-1499
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can be used to identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise.

  • PDF

A Combination and Calibration of Multi-Model Ensemble of PyeongChang Area Using Ensemble Model Output Statistics (Ensemble Model Output Statistics를 이용한 평창지역 다중 모델 앙상블 결합 및 보정)

  • Hwang, Yuseon;Kim, Chansoo
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.247-261
    • /
    • 2018
  • The objective of this paper is to compare probabilistic temperature forecasts from different regional and global ensemble prediction systems over PyeongChang area. A statistical post-processing method is used to take into account combination and calibration of forecasts from different numerical prediction systems, laying greater weight on ensemble model that exhibits the best performance. Observations for temperature were obtained from the 30 stations in PyeongChang and three different ensemble forecasts derived from the European Centre for Medium-Range Weather Forecasts, Ensemble Prediction System for Global and Limited Area Ensemble Prediction System that were obtained between 1 May 2014 and 18 March 2017. Prior to applying to the post-processing methods, reliability analysis was conducted to identify the statistical consistency of ensemble forecasts and corresponding observations. Then, ensemble model output statistics and bias-corrected methods were applied to each raw ensemble model and then proposed weighted combination of ensembles. The results showed that the proposed methods provide improved performances than raw ensemble mean. In particular, multi-model forecast based on ensemble model output statistics was superior to the bias-corrected forecast in terms of deterministic prediction.

Self-calibration Algorithm of Systematic Errors For Interferometer (간섭계에 있어서의 계통 오차의 자율 교정 알고리즘)

  • Ikumatsu Fujimoto;Lee Taeyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.63-71
    • /
    • 2005
  • When an almost flat surface under test is measured by an interferometer, the measurement result is largely influenced by systematic errors that include geometrical errors of a reference flat surface. To determine the systematic errors of the interferometer by the conventional method that is called the three flat method, we must take the reference flat surface out from the interferometer and measure it. Because of difficulties to set the reference flat surface to the interferometer exactly and quickly, this method is not practical. On the other hand, the method that measures a surface under test with some shifts in the direction being perpendicular to the optical axis of the interferometer is studied. However, the parasitic pitching, rolling and up-down movement caused by the above shifts brings serious error to the measurement result, and the algorithm by which the influences can be eliminated is not still established. In this paper, we propose the self-calibration algorithm for determining the systematic errors that include geometrical errors of a reference flat surface by several rotation shifts and a linear shift of general surface under test, and verify by a numerical experiment that this algorithm is useful for determining the systematic errors.

Identification and Correction of Microlens-array Error in an Integral-imaging-microscopy System

  • Imtiaz, Shariar Md;Kwon, Ki-Chul;Alam, Md. Shahinur;Hossain, Md. Biddut;Changsup, Nam;Kim, Nam
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.524-531
    • /
    • 2021
  • In an integral-imaging microscopy (IIM) system, a microlens array (MLA) is the primary optical element; however, surface errors impede the resolution of a raw image's details. Calibration is a major concern with regard to incorrect projection of the light rays. A ray-tracing-based calibration method for an IIM camera is proposed, to address four errors: MLA decentering, rotational, translational, and subimage-scaling errors. All of these parameters are evaluated using the reference image obtained from the ray-traced white image. The areas and center points of the microlens are estimated using an "8-connected" and a "center-of-gravity" method respectively. The proposed approach significantly improves the rectified-image quality and nonlinear image brightness for an IIM system. Numerical and optical experiments on multiple real objects demonstrate the robustness and effectiveness of our proposed method, which achieves on average a 35% improvement in brightness for an IIM raw image.

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

OPTIMIZATION ON VEHICLE FUEL CONSUMPTION IN A HIGWAY BUS USING VEHICLE SIMULATION

  • Lyu, M.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.841-846
    • /
    • 2006
  • This paper presents a numerical approach to optimizing vehicle fuel economy in a higway bus. The method described is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum number of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.

Back-Face Strain Compliance Calibration for the Four-Point Bend Specimen

  • Huh, Yong-Hak;Song, Ji-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.314-319
    • /
    • 2000
  • Back-face strain compliance (BFS compliance) for the four-point bend specimen has been calibrated for various crack length ratios. Finite element technique was employed to simulate four-point loading and calculate back-face strain of the bend specimen. The numerically determined strain variation along the back face indicates that the sensitivity to gage placement increases with crack length and back-face strain at the gage length less than O.2W, where W is the width of the bend specimen, can be measured within 5% deviation of the maximum BFS. Non-dimensional back-face strain compliance, -E'BCW, was calibrated with FE analysis and experiment. The experimentally determined compliance indicates good agreement with the numerical compliance and can be expressed as a function of crack length ratio.

  • PDF

The study on the combustion characteristics of a planar flame burner as a calibration source of laser diagnostics (연소진단 검정원으로써 평면화염 버너의 연소특성 연구)

  • Gil,Yong-Seok;Jeong, Seok-Ho;Lee, Byeong-Jun;Han, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3355-3360
    • /
    • 1996
  • To provide standard data of temperature and species concentration in a flame for calibrating the laser based combustion diagnostics, we investigated combustion characteristics of a flat flame burner(Mckennar Product). For various stoichiometric ratios we measured temperature and concentration of OH in the premixed methane/air flame with Coherent anti-Stokes Raman spectroscopy and laser induced fluorescence technique, respectively. Assuming the chemical equilibrium condition at the measured temperature, the mole fraction of the OH radical in the flame was obtained and compared with numerical analysis.

A study on Contact Pressure Measurement of SM45C/STS410 Materials by Means of Ultrasonic Waves (초음파에 의한 SM45C/STS410재의 접촉압력측정에 관한 연구)

  • Yi, W.;Yun, I.S.;Jeong, E.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.92-99
    • /
    • 1996
  • The contact pressure in jointed plates was measured by means of an improved ultrasonic technique. In order to get calibration curve, the relationship between contact pressure and ratio of boundary and bottom echo of normal beam probes were obtained for the calibration blocks with various surface roughness. The ratio of boundary and bottom echoes were measured for the upper/under plates locally compressed with uniform pressure, and the distribution of contact pressure was obtaines. The measured pressure has a good agreement with results of FEM analysis. Thus the proposed ultrasonic method in this work is very useful to measure the contact pressure.

  • PDF

Calibration of Acceleration Plant and Test Rig Design to Dynamic Fracture (동적 파괴에 대한 가속장치의 보정 및 시험장치 설계)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.47-52
    • /
    • 2008
  • The force transducer in the acceleration plant due to dynamic fracture is calibrated by dynamically using the stress pulses from a longitudinal bar. The bar is supported by two strings attached to the ceiling. The bar velocities before and after impact are measured and a full bridge at bar and transducer is formed by the four strain gauges. A transient recorder is used to store the stress pulse signals of force transducer and bar. For the first test series, three point bend test specimens can be chosen by means of test rig design and the inspection as sample experiment in this presented paper is sufficient for proving with the numerical simulation of the specimen model.