• 제목/요약/키워드: numerical calibration

검색결과 245건 처리시간 0.025초

전자기 수치해석을 이용한 표준보정시험편의 배열형 와전류 탐촉자 신호 특성 해석 (Characteristic Analysis of Eddy Current Array Probe Signal in Combo Calibration Standard Tube Using Electromagnetic Numerical Analysis)

  • 김지호;이향범
    • 비파괴검사학회지
    • /
    • 제30권4호
    • /
    • pp.330-337
    • /
    • 2010
  • 본 논문은 원전 증기발생기(SG, steam generator) 세관의 정밀 진단을 위한 차세대 탐촉자인 배열형 와전류 탐촉자의 특성 해석에 대한 3차원 전자기 수치해석을 수행하였다. 다양한 결함 해석을 위해 ASME(American Society of Mechanical Engineers) 표준시험편과 X-probe combo 표준보정시험편(inline EXP/spiral groove combo standard)을 선정하여 탐상신호를 획득하고, 실제 실험 신호와 비교하여 결과의 타당성을 검증하였다. 표준 보정 시험편의 해석 결과를 바탕으로 원전 SG 세관에서 주로 발생하고 있는 pitting, SCC(stress corrosion cracking), multiple SCC, wear 결함에 대하여 탐상신호를 획득하였다. 해석 대상으로는 원자력발전소 SG 세관으로 사용하고 있는 Inconel 600 도체관을 사용하였고, 이때의 시험주파수는 300 kHz이다. 본 논문을 통하여 각각의 결함에 대한 신호 특성을 파악하여 배열형 와전류 탐촉자의 결함의 종류에 따른 신호 특성을 확인할 수 있었다. 본 논문의 결과는 배열형 와전류 탐촉자의 와전류 탐상 신호 평가시 도움이 될 것이다.

Prequalification of a set of buckling restrained braces: Part II - numerical simulations

  • Zub, Ciprian Ionut;Stratan, Aurel;Dubina, Dan
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.561-580
    • /
    • 2020
  • Buckling restrained braces (BRBs) were developed as an enhanced alternative to conventional braces by restraining their global buckling, thus allowing development of a stable quasi-symmetric hysteretic response. A wider adoption of buckling restrained braced frames is precluded due to proprietary character of most BRBs and the code requirement for experimental qualification. To overcome these problems, BRBs with capacities corresponding to typical steel multi-storey buildings in Romania were developed and experimentally tested in view of prequalification. In the second part of this paper, a complex nonlinear numerical model for the tested BRBs was developed in the finite element environment Abaqus. The calibration of the numerical model was performed at both component (material models: steel, concrete, unbonding material) and member levels (loading, geometrical imperfections). Geometrically and materially nonlinear analyses including imperfections were performed on buckling restrained braces models under cyclic loading. The calibrated models were further used to perform a parametric study aiming at assessing the influence of the strength of the buckling restraining mechanism, concrete class of the infill material, mechanical properties of steel used for the core, self-weight loading, and frame effect on the cyclic response of buckling restrained braces.

Precise Test Sieves Calibration Method Based on Off-axis Digital Holography

  • Abdelsalam, Dahi Ghareab;Baek, Byung-Joon;Kim, Dae-Suk
    • Journal of the Optical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.146-151
    • /
    • 2011
  • We describe, throughout a Mach-Zehnder interferometric configuration, a new test sieves calibration method based on off-axis digital holography. The experiment is conducted on a test sieve of square openings. The nominal sieve opening is 1.00 mm with maximum individual opening of 1.14 mm in size. The recorded off-axis hologram is numerically processed using Fresnel transforms to obtain an object wave (amplitude and phase). From the reconstructed phase, the average size of the illuminated openings has been measured precisely. The proposed method can provide a real time solution for calibrating test sieves very precisely and with moderate accuracy.

타원체를 이용한 3축 센서의 실시간 보정 알고리듬 개발 (Development of the Calibration Algorithm of 3 Axis Vector Sensor Using Ellipsoid)

  • 황정문;김정한
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.643-651
    • /
    • 2015
  • Multi-axis magnetic and accelerometer sensor are widely used in consumer product such as smart phones. The vector output of multi-axis sensors have errors on each axis such as offset error, scale error, non-orthogonality. These errors cause many problems on the performance of the applications. In this paper, we designed the effective inline compensation algorithm for calibrating of 3 axis sensors using ellipsoid for mass production of multi-axis sensors. The outputs with those kinds of errors can be modeled by ellipsoid, and the proposed algorithm makes sequential mappings of the virtual ellipsoid to perfect sphere which is calibrated function of the sensor on three-dimensional space. The proposed calibrating process composed of four main stages and is very straightforward and effective. In addition, another imperfection of the sensor such as the drift from temperature can be easily inserted in each mapping stage. Numerical simulation and experimental results shows great performance of the proposed compensation algorithm.

선형 회귀 분석과 회색 관계 분석을 이용한 디젤엔진의 다단연료분사 제어전략 최적화 연구 (A Study on the Optimization of Multiple Injection Strategy for a Diesel Engine using Grey Relational Analysis and Linear Regression Analysis)

  • 김수겸;우승철;김웅일;박상기;이기형
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.247-253
    • /
    • 2015
  • Recently, the engine calibration technique has been much more complicated than that of the past engine case in order to satisfy the strict emission regulations. The current calibration method for the diesel engine which has an increasing market is both costly and time-consuming. New engine calibration method is required to develop for high-quality diesel engines with low cost and release it at the appropriate time. This study provides the optimal calibrating technique for complex engine systems using statistical modeling and numerical optimization. Firstly, it design a test plan based on Design of Experiments, a V-optimality methodology which is suitable looking for set-points, and determine the shape of test engine response. Secondly, it uses functions to make linear regression model for data analysis and optimization to fit the models of engines behavior. Finally, it generates the optimal calibrations obtained directly from empirical engine models using Grey Relational Analysis and compares the calibrations with data. This method can develop a process for systematically identifying the optimal balance of engine emissions.

새만금호 내 방수제 공사 및 준설에 의한 수리동역학적 특성 변화 수치 모델링 (Numerical Simulation on Hydrodynamic Characterization Changes Associated with the Construction of Dikes and Dredging Operations in Saemangeum Lake)

  • 오찬성;최정훈;조영권
    • 한국환경과학회지
    • /
    • 제22권9호
    • /
    • pp.1115-1129
    • /
    • 2013
  • The study area is located on the western coast, and the inner development construction has been ongoing since 2011. The purposes of current study are to effectively simulate and quantitatively predict a temporal and spatial distributions of water temperature and salinity due to the stages of inner development construction in saemangeum reclaimed area. The transient-state numerical modeling using EFDC model is done, and the numerical simulation results are validated reasonably by repetitive numerical model calibration procedures with respect to field measurements of water temperature and salinity. The spatial distributions of water temperature and salinity show similar trends before and after construction of the dikes. In spring season, the salinity has maximum value of 21 psu, while, in summer season, the salinity shows 7 psu in a whole modeling domain. Thus, it is clearly observed that salt water is replaced by freshwater. However, the salinity and temperature reach their initial conditions at the end of the year. The salinity after construction of the dikes is lower than that before construction of them at Mankyeong area. On the other hands, after construction of the dikes, the salinity after dredging operations is higher than that before dredging. Because drastical increasing of water volume in Saemangeum Lake leads to increasing of stagnation time at bottom layer, and salt water is easily intruded to the two estuaries. Therefore, it may be concluded that hydrodynamic characteristics on Saemangeum are dominated by either Mankyeong and Dongjin discharge or sluice gates in/out-flow amounts, and thus they must be properly considered when rigorous and reasonable predictions of water temperature and salinity according to the stages of inner development construction.

수압조절수조(Surge Tank)에 관한 연구 (A Study on the Surge Tank)

  • 남선우
    • 물과 미래
    • /
    • 제6권1호
    • /
    • pp.29-35
    • /
    • 1973
  • For the simplicity in the analytical solution, the simple surge tank has been chosen for the test where an unsteady flow is porduced by suddenly closing the valve controlling the discharge. The valve is loated immediately downstream from the surge tank. Momentumn equations in the penstock and in the surge column are measured recored on the oscillograph and then the calibration of surge column heights and scale readings on the oscillograph trace are made. The diameter of the penstock are determined by the trial and error method. The water levels in the surge column are computed by numerical integration of the differential equation of the surge tank. The relationships between the results from the experiment and numerical computation are figured, compared and discussed.

  • PDF

On the use of numerical models for validation of high frequency based damage detection methodologies

  • Aguirre, Diego A.;Montejo, Luis A.
    • Structural Monitoring and Maintenance
    • /
    • 제2권4호
    • /
    • pp.383-397
    • /
    • 2015
  • This article identifies and addresses current limitations on the use of numerical models for validation and/or calibration of damage detection methodologies that are based on the analysis of the high frequency response of the structure to identify the occurrence of abrupt anomalies. Distributed-plasticity non-linear fiber-based models in combination with experimental data from a full-scale reinforced concrete column test are used to point out current modeling techniques limitations. It was found that the numerical model was capable of reproducing the global and local response of the structure at a wide range of inelastic demands, including the occurrences of rebar ruptures. However, when abrupt sudden damage occurs, like rebar fracture, a high frequency pulse is detected in the accelerations recorded in the structure that the numerical model is incapable of reproducing. Since the occurrence of such pulse is fundamental on the detection of damage, it is proposed to add this effect to the simulated response before it is used for validation purposes.

Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile

  • Islam, Md. Jahidul;Liu, Zishun;Swaddiwudhipong, Somsak
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.111-123
    • /
    • 2011
  • Severe element distortion problem is observed in finite element mesh while performing numerical simulations of high velocity steel projectiles penetration/perforation of concrete targets using finite element method (FEM). This problem of element distortion in Lagrangian formulation of FEM can be resolved by using element erosion methodology. Element erosion approach is applied in the finite element program by defining failure parameters as a condition for element elimination. In this study strain parameters for both compression and tension at failure are used as failure criteria. Since no direct method exists to determine these values, a calibration approach is used to establish suitable failure strain values while performing numerical simulations of ogive-nose steel projectile penetration/perforation into concrete target. A range of erosion parameters is suggested and adopted in concrete penetration/perforation tests to validate the suggested values. Good agreement between the numerical and field data is observed.

대입경 락필재료에 대한 수치시험실 활용해석 (Application simulations as numerical laboratory for large diameter rockfill materials)

  • 전제성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.852-855
    • /
    • 2010
  • Numerical simulations for large scale triaxial tests with large diameter rockfill materials are conducted using distinct element method. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. With micro parameters which are chosen by calibration process, discrete particle modelling of triaxial test in case of other confining stress and cyclic loading condition were conducted. Also numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell.

  • PDF