• Title/Summary/Keyword: numerical calibration

Search Result 246, Processing Time 0.023 seconds

Dynamic Characteristic of Truss Type Lift Gate by Model Tests (모형실험에 의한 트러스형 리프트 게이트의 진동 특성)

  • Lee, Seong Haeng;Shin, Dong Wook;Kim, Kyoung Nam;Jung, Kyoung Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.337-345
    • /
    • 2012
  • A model test is performed to investigate the dynamic behavior of truss type lift gate which is being constructed by the four major rivers project. The gate dimensioned 40 m in width, 9m in height is scaled with the ratio of 1:25 and is made of acryl panel and supplemented weight by lead in the concrete test flume dimensioned 1.2 m in width, 0.5 m in height and 30m in length. Firstly natural frequencies of the model gate are measured and compared with the numerical results for the calibration. The amplitudes of the vibration are measured under the different gate opening, upstream water level conditions. Also models with bottom angle $20^{\circ}$, $35^{\circ}$ and $50^{\circ}$ are tested and compared to find out a proper shape of bottom structure which minimizes the gate vibration. These test results presents a basic data for the guide manuals of gate management and a design method to reduce the gate vibration of truss type lift gate.

Probability-Based WSD Code for Reinforced Concrete (확률이론(確率理論)에 기초(基礎)한 철근(鐵筋)콘크리트 허용응력설계규준(許容應力設計規準))

  • Cho, Ryo Nam;Shin, Jae Chul;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.61-68
    • /
    • 1986
  • This paper presents a method for developing a probability-based working stress design code for reinforced concrete. Reliability of reinforced concrete structural members is evaluated by using an advanced second moment reliability method, and then, a practical method for code calibration is shown in this paper. The target reliability indices for various structural elements are determined by considering the results of the numerical studies on the safety of the structures designed by the current code, and by reflecting the construction practice. A set of allowable stresses and safety factors for reinforced concrete is proposed as a possible substitute for the current safety provisions, based on the rational target reliability indices.

  • PDF

Applicability Evaluation to Grid-based Rainfall-Runoff-Sediment Model for Sediment Discharge Estimation (격자기반 강우-유출-유사 모형의 유사량 산정에 관한 적용성 평가)

  • Choi, Hyun Gu;Park, Jun Hyung;Han, Kun Yeun
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.132-143
    • /
    • 2017
  • It is essential to obtain periodic sediment discharge data in a river in order to minimize problems that may arise from the erosion, transport, and deposition of sediment. However, it is difficult to estimate sediment discharge by the sediment discharge measurement plan in Korea at present, and empirical fomulas or numerical models are used to replace them. This paper has applied the K-DRUM model, a grid-based rainfall-runoff-sediment model, to estimate sediment discharge and ensure the continuity of the data in the watershed. Discharge and sediment load in 17 watersheds were estimated and the applicability of the model was analyzed through comparisons with measured data. For quantitative evaluation, NSE, PBIAS and RSR items were used, and discharge results reflected the tendency of rainfall and showed high statistical value. In case of sediment discharge, the soil erosion process of the watershed is physically well reflected. When the calibration was performed using the measure data, the applicability seems to be excellent in estimating the continuous sediment discharge data in the real watershed.

Numerical Investigation, Calibration Method of the Interaction between Ieodo Ocean Research Station and Ocean Current (수치해석을 이용한 이어도 기지 구조물이 해수 유동에 미치는 영향 분석과 해류 관측 평가 및 보정방안 연구)

  • Hong, Woo-Ram;Shim, Jae-Seol;Min, In-Ki;Kim, Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.476-483
    • /
    • 2007
  • One of the main function of Ieodo Ocean Research Station is to service the information about the weather and fishing grounds condition which are collected through calibrating convection flow and ocean current around the station. However, due to the influence of the station's structure below sea level, it is difficult to obtain the exact flow data. Therefore, it is required to research on the effect of the structure and the method to evaluate and revise the observed data. In this paper, as a basic study, it deals with the algorithm that simulate the interaction between ocean current and the station structure, followed by discussions about the way to applicate the algorithm. Through 3-dimensional computational fluid dynamics analyses (using Navier-Stokes equations with K-turbulence model), the influence of the station and submerged rocks are quantitatively evaluated, and we would suggest methods how to obtain accurate flow information from the measured rough data.

Numerical Investigation of Temperature Uniformity and Estimation Accuracy for MEMS-based Black Body System (MEMS 기반 흑체 시스템의 온도 균일도 및 추정 정확도의 수치 해석적 검토)

  • Chae, Bong-Geon;Kim, Tae-Gyu;Lee, Jong-Kwang;Kang, Suk-joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.455-462
    • /
    • 2016
  • Output Characteristics of the spaceborn image sensor such as infrared(IR) sensor are varied according to time elapses and sensor repetition on/off operation. As a result, the quality of IR sensor image is decreased. Therefore, spaceborne image sensor require a periodic calibration using a black body system by correcting a non-uniformity of the sensor. In this paper, we proposed a MEMS-based black body system that can implement the high temperature uniformity at various standard temperatures ranging from low to high temperature and easily estimate the representative surface temperature. In addition, it has advantages lightweight, low-power and high accuracy. The feasibility of the proposed MEMS-based black body system was verified through the thermal analysis.

The Study on Experimental Measurement Method of Hinge Moment Acting on Control Surface of Air Vehicle (비행체 조종면에 작용하는 힌지 모멘트의 시험적 측정 방법 연구)

  • Park, Jong-Min;Chung, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.165-170
    • /
    • 2012
  • This paper contains the test method to obtain aerodynamic hinge moments acting on the control surface of air vehicle wing. During the flight, hinge moments make difference between actual control surface angle and control angle which is measured by sensor of actuator. The hinge moments can be obtained by using this difference. Static ground load test and calibration test were conducted to obtain torsional stiffness of control surface actuation system. This results are used to calculate hinge moments. In addition, the mechanical errors of actuation system such as slip angle of mounting point and backlash could be estimated. Using flight test results, this experimental measurement method of hinge moment acting on control surface is conducted. The results of this method are similar to those of numerical simulation method, and the validity of this method is proved.

Touch-Trigger Probe Error Compensation in a Machining Center (공작기계용 접촉식 측정 프로브의 프로빙 오차 보상에 관한 연구)

  • Lee, Chan-Ho;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.661-667
    • /
    • 2011
  • Kinematic contact trigger probes are widely used for feature inspection and measurement on coordinate measurement machines (CMMs) and computer numerically controlled (CNC) machine tools. Recently, the probing accuracy has become one of the most important factors in the improvement of product quality, as the accuracy of such machining centers and measuring machines is increasing. Although high-accuracy probes using strain gauge can achieve this requirement, in this paper we study the universal economic kinematic contact probe to prove its probing mechanism and errors, and to try to make the best use of its performance. Stylus-ball-radius and center-alignment errors are proved, and the probing error mechanism on the 3D measuring coordinate is analyzed using numerical expressions. Macro algorithms are developed for the compensation of these errors, and actual tests and verifications are performed with a kinematic contact trigger probe and reference sphere on a CNC machine tool.

Flood Routing Using Numerical Analysis Model (수치해석모형에 의한 홍수추적)

  • 이용직;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.117-130
    • /
    • 1989
  • In this study, an implicit one-dimensional model, DWRM(Dynamic Wave Routing Model) was developed by using the four-point weighted difference method. By applying the developed model to the Keum River, the parameters were calibrated and the model applicability was tested through the comparison between observed and computed water levels. In addition, the effects of the construction of an estuary dam to the flood wave were estimated as a result of the model application. The results of the study can be summarized as follows; 1. The roughness coefficients were evaluated by comparison between observed and computed water level at Jindu, Gyuam and Ganggyeung station in 1985. The Root Mean Squares for water level differences between observed and computed values were 0.10, 0.11, 0. 29m and the differences of peak flood levels were 0.07, 0.02, 0. 07m at each station. Since the evaluated roughness coefficients were within the range of 0.029-0.041 showing the realistic value for the general condition of rivers, it can be concluded that the calibration has been completed. 2. By the application of model using the calibrated roughness coefficients, the R. M. S. for water level differences were 0.16, 0.24, 0. 24m and the differences of peak flood level were 0.17, 0.13,0.08 m at each station. The arrival time of peak flood at each station and the stage-discharge relationship at Gongju station agreed well with the observed values. Therefore, it was concluded that the model could be applied to the Keum River. 3. The model was applied under conditions before and after the construction of the estuary dam. The 50-year frequency flood which had 7, 800m$^3$/sec of peak flood was used as the upstream condition, and the spring tide and the neap tide were used as the downstream condition. As the results of the application, no change of the peak flood level was showed in the upper reaches of 19.2km upstream from the estuary dam. For areas near 9.6km upstream from the estuary dam, the change of the peak flood level under the condition before and after the construction was 0. 2m. However considering the assumptions for the boundary conditions of downstream, the change of peak flood level would be decreased.

  • PDF

Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

  • Caterino, Nicola;Georgakis, Christos T.;Spizzuoco, Mariacristina;Occhiuzzi, Antonio
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.75-92
    • /
    • 2016
  • The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing than ever. The main objective is limiting bending moment demand by relaxing the base restraint, without increasing the top displacement, so reducing the incidence of harmful "p-delta" effects. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed. It is made of a smooth hinge with additional elastic stiffness and variable damping respectively given by springs and SA magnetorheological (MR) dampers installed in parallel. The idea has been physically realized at the Denmark Technical University where a 1/20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base stress, as well as to about 30% of reduction of top displacement in respect to the fixed base case.

Feasibility Study for the Development of a Device for Pathological Tissue (병리학적 조직 진단장치 개발에 대한 타당성 분석 연구)

  • Ko Chea-Ok;Park Min-Young;Kim Jeong-Lan;Lee Ae-Kyoung;Choi Hyung-Do;Choi Jae-Ic;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.341-350
    • /
    • 2006
  • In this paper, a new method for detecting breast cancer is proposed, which utilizes dielectric characteristics of pathological tissues and time delay of back scattered response, and its feasibility was investigated. We have developed a detection algorithm and verified it by numerical simulation and measurement for a prototype system. For a prototype system, we have fabricated experimental model(artificial breast with a cancer) and UWB(ultra-wideband) antenna. The results of the measurement simulation show an excellent detection capability of a cancer tissue. It is found that a good UWB antenna and a good calibration signal are key elements of such detection system. Further study is ongoing to develop a commercial system.