• 제목/요약/키워드: numerical and empirical methods

검색결과 130건 처리시간 0.025초

Bayesian small area estimations with measurement errors

  • Goo, You Mee;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.885-893
    • /
    • 2013
  • This paper considers Bayes estimations of the small area means under Fay-Herriot model with measurement errors. We provide empirical Bayes predictors of small area means with the corresponding jackknifed mean squared prediction errors. Also we obtain hierarchical Bayes predictors and the corresponding posterior standard deviations using Gibbs sampling. Numerical studies are provided to illustrate our methods and compare their eciencies.

단파장 영역에서의 부가저항 해석 (Analysis of Added Resistance in Short Waves)

  • 양경규;서민국;김용환
    • 대한조선학회논문집
    • /
    • 제52권4호
    • /
    • pp.338-348
    • /
    • 2015
  • In this study, the added resistance of ships in short waves is systematically studied by using two different numerical methods - Rankine panel method and Cartesian grid method – and existing asymptotic and empirical formulae. Analysis of added resistance in short waves has been preconceived as a shortcoming of numerical computation. This study aims to observe such preconception by comparing the computational results, particularly based on two representative three-dimensional methods, and with the existing formulae and experimental data. In the Rankine panel method, a near-field method based on direct pressure integration is adopted. In the Cartesian grid method, the wave-body interaction problem is considered as a multiphase problem, and volume fraction functions are defined in order to identify each phase in a Cartesian grid. The computational results of added resistance in short waves using the two methods are systematically compared with experimental data for several ship models, including S175 containership, KVLCC2 and Series 60 hulls (CB = 0.7, 0.8). The present study includes the comparison with the established asymptotic and empirical formulae in short waves.

A Comparative Study on the Performance of Bayesian Partially Linear Models

  • Woo, Yoonsung;Choi, Taeryon;Kim, Wooseok
    • Communications for Statistical Applications and Methods
    • /
    • 제19권6호
    • /
    • pp.885-898
    • /
    • 2012
  • In this paper, we consider Bayesian approaches to partially linear models, in which a regression function is represented by a semiparametric additive form of a parametric linear regression function and a nonparametric regression function. We make a comparative study on the performance of widely used Bayesian partially linear models in terms of empirical analysis. Specifically, we deal with three Bayesian methods to estimate the nonparametric regression function, one method using Fourier series representation, the other method based on Gaussian process regression approach, and the third method based on the smoothness of the function and differencing. We compare the numerical performance of three methods by the root mean squared error(RMSE). For empirical analysis, we consider synthetic data with simulation studies and real data application by fitting each of them with three Bayesian methods and comparing the RMSEs.

Empirical Bayes Estimate for Mixed Model with Time Effect

  • Kim, Yong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.515-520
    • /
    • 2002
  • In general, we use the hierarchical Poisson-gamma model for the Poisson data in generalized linear model. Time effect will be emphasized for the analysis of the observed data to be collected annually for the time period. An extended model with time effect for estimating the effect is proposed. In particularly, we discuss the Quasi likelihood function which is used to numerical approximation for the likelihood function of the parameter.

Ultimate strength of stiffened panels subjected to non-uniform thrust

  • Anyfantis, Konstantinos N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.325-342
    • /
    • 2020
  • The current study is focused on the evaluation of the ultimate strength of stiffened panels found in ship hull structures that are subjected to combined uniaxial thrust, in-plane and out-of-plane bending moments. This loading condition, which is in general ignored when performing buckling checks, applies to representative control geometries (stiffener with attached plating) as a consequence of the linearly varying normal stresses along the ship's depth induced by the hull-girder vertical bending moment. The problem is generalized by introducing a non-uniform thrust described by a displacement ratio and rotation angle and by introducing the slenderness ratios, within the practical range of interest. The formed design space is explored through methods sourcing from Design of Experiments and by applying non-linear finite element procedures. Surrogate empirical models have been constructed through regression analysis and Response Surface Methods. An additional empirical model is provided to the literature for predicting the ultimate strength under uniaxial thrust. The numerical experimentation has shown that is a significant influence on the ultimate strength of stiffened panels as the thrust non-uniformity increases.

Experimental and numerical study on ice resistance for icebreaking vessels

  • Hu, Jian;Zhou, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.626-639
    • /
    • 2015
  • Ice resistance is defined as the time average of all longitudinal forces due to ice acting on the ship. Estimation of ship's resistance in ice-covered waters is very important to both designers and shipbuilders since it is closely related to propulsion of a ship and it determines the engine power of the ship. Good ice performance requires ice resistance should be as low as possible to allow different manoeuvres. In this paper, different numerical methods are presented to calculate ice resistance, including semi-analytical method and empirical methods. A model test of an icebreaking vessel that was done in an ice basin has been introduced for going straight ahead in level ice at low speed. Then the comparison between model test results and numerical results are made. Some discussions and suggestions are presented as well to provide an insight into icebreaking vessel design at early stage.

Experimental study and numerical modeling of liquid sloshing damping in a cylindrical container with annular and sectorial baffles

  • Mohammadi, Mohammad Mahdi;Moosazadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.349-366
    • /
    • 2022
  • The ability of baffles in increasing the sloshing damping is investigated in this study by theoretical, numerical, and experimental methods. Baffles Installed as separators in containers, can change the dynamic properties of sloshing. The main purpose of this study is to investigate the effect of baffle placement.The main purpose of this study is to investigate the effect of placing baffles in order to provide appropriate frequencies and damping and to present a practical baffle arrangement in the design ofsloshing. In this regard, an experimental setup is designed to study the fluid sloshing behavior and damping properties in cylindrical tanks filled up to an arbitrary depth. A new combination of annular and sectorial baffles is employed to evaluate fluid sloshing in the tank. The results show that the proposed baffle arrangement has a desired effect on the damping and fluid sloshing frequencies and optimally satisfies the anticipated design requirements. In addition, the theoretical frequencies exceed empirical frequencies at the points far from baffles, while at the points close to baffles, the empirical ones are higher than theoretical ones. Also, at the depths near the bottom of container sloshing frequencies are not affected by sectorial baffles, although the theoretical curve predicts a reduction in the fundamental frequency of sloshing. Finally, the results of finite volume and finite element methods which compared with experimental data, indicated a good agreement between different approaches.

Evaluation of blasting vibration with center-cut methods for tunnel excavation

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Kim, Nam-Soo
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.423-435
    • /
    • 2022
  • Ground vibration generated repeatedly in blasting tunnel excavation sites is known to be one of the major hazards induced by blasting operations. Various studies have been conducted to minimize these hazards, both theoretical and empirical methods using electronic detonator, the deck charge method, the center-cut method among others Among these various existing methods for controlling the ground vibration, in this study, we investigated the cut method. In particular, we analyzed and compared the V-cut method, which is commonly used in tunnel blasting, to the double-drilled parallel method, which has recently been introduced in tunnel excavation site. To understand the rock fragmentation efficiency as well as the ground vibration controllability of the two methods, we performed in-situ field blasting tests with both cut methods at a tunnel excavation site. Additionally, numerical analysis by FLAC3D has been executed for a better understanding of fracture propagation pattern and ground vibration generation by each cut method. Ground vibration levels, by PPVs measured in field blasting tests and PPVs estimated in numerical simulations, showed a lower value in the double-drilled parallel compared with the V-cut method, although the exact values are quite different in field measurement and numerical estimation.

Experimental and numerical identification of flutter derivatives for nine bridge deck sections

  • Starossek, Uwe;Aslan, Hasan;Thiesemann, Lydia
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.519-540
    • /
    • 2009
  • This paper presents the results of a study into experimental and numerical methods for the identification of bridge deck flutter derivatives. Nine bridge deck sections were investigated in a water tunnel in order to create an empirical reference set for numerical investigations. The same sections, plus a wide range of further sections, were studied numerically using a commercially available CFD code. The experimental and numerical results were compared with respect to accuracy, sensitivity, and practical suitability. Furthermore, the relevance of the effective angle of attack, the possible assessment of non-critical vibrations, and the formulation of lateral vibrations were studied. Selected results are presented in this paper. The full set of raw data is available online to provide researchers and engineers with a comprehensive benchmarking tool.

40 mm 장축공동실린더의 마모경험식 유도 (Derivation of Empirical Erosion Equation of the 40 mm Long Hollow Cylinder)

  • 정동윤;오명호;신내호
    • Tribology and Lubricants
    • /
    • 제25권3호
    • /
    • pp.171-175
    • /
    • 2009
  • One of the critical issues associated with the 40mm long hollow cylinder's development and maintenance is the prediction of cylinder erosion. The actual firing test is the most accurate method to measure the cylinder erosion rate. But it costs a great deal and requires a long measurement time. Hence many empirical methods have been proposed to predict the erosion rate and life span of long hollow cylinders. An EFC formula is calculated. An approximate erosion formula for the ammunition type A is derived to interpolate 16 observation values up to 4,000 rounds. A new erosion equation and muzzle velocity formula are also suggested. Several numerical results are presented.