• Title/Summary/Keyword: numerical and empirical methods

Search Result 130, Processing Time 0.023 seconds

Estimation of Attenuation Relationship Compatible with Damping Ratio of Rock Mass from Numerical Simulation (수치해석을 통한 진동감쇠식 맞춤형 암반의 감쇠비 산정)

  • Kim, Nag Young;Ryu, Jae-Ha;Ahn, Jae-Kwang;Park, Duhee;Son, Murak;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.45-55
    • /
    • 2015
  • The stability of the adjcent structures or slopes under blasting is typically evaluated using an empirical vibration attenuation curve or dynamic numerical analysis. To perform a dynamic analysis, it is necessary to determine the blast load and the damping ratio of rock mass. Various empirical methods have been proposed for the blast load. However, a study on representative values of damping ratio of a rock mass has not yet been performed. Therefore, the damping ratio was either ignored or selected without a clear basis in performing a blast analysis. Selection of the dampring ratio for the rock mass is very difficult because the vibration propagation is influenced by the layout and properties of the rock joints. Besides, the vibration induced by blasting is propagated spherically, whereas plane waves are generated by an earthquake. Since the geometrical spreading causes additional attenuation, the damping ratio should be adjusted in the case of a 2D plane strain analysis. In this study, we proposed equivalent damping ratios for use in continuum 2D plane strain analyses. To this end, we performed 2D dynamic analyses for a wide range of rock stiffness and investigated the characteristics of blast vibration propagation. Based on numerical simulations, a correlation between the attenuation equation, shear wave velocity, and equivalent damping ratio of rock mass is presented. This novel approach is the first attempt to select the damping ratio from an attenuation relationship. The proposed chart is easy to be used and can be applied in practice.

Equivalent Design Parameter Determination for Effective Numerical Modeling of Pre-reinforced Zones in Tunnel (터널 사전보강 영역의 효과적 수치해석을 위한 등가 물성치 결정 기법)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2006
  • Although various methods for effective modeling of pre-reinforced zones have been suggested for numerical analysis of large section tunnels, tunnel designers refer to empirical cases and literature reviews rather than engineering methods because ones who use commercial programs are unfamiliar with a macro-scale approach in general. Therefore, this paper suggests a simple micro-scale approach combined with the macro-scale approach to determine equivalent design parameters for effective numerical modeling of pre-reinforced zones in tunnel. This new approach is to determine the equivalent stiffness of pre-reinforced zones with combination of ground, bulb, and steel in series or/and parallel. For verification, 3-D numerical results from the suggested approach are compared with those of a realistic model. The comparison suggests that two cases make best approximation to a realistic solution: One is related to the series-parallel stiffness system (hereafter SPSS) in which bulb and steel are coupled in parallel and then connected to the ground in series, and the other is the series stiffness system (hereafter SSS) in which only bulb and steel are coupled in series. The SPSS is recommended for stiffness calculation of pre-reinforced zones because the SSS is inconvenient and time-consuming. The SPSS provides slightly bigger vertical displacement at tunnel crown in weathered rock than other cases and give almost identical results to a realistic model for horizontal displacement at tunnel spring line and ground surface settlement. Displacement trends on weathered rock and weathered soil are similar. The SPSS which is suggested in this paper represents the behavior mechanism of pre-reinforced area effectively.

  • PDF

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs

  • Perumal, Ramadoss;Prabakaran, V.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.479-488
    • /
    • 2020
  • The experimental and numerical works were carried out on high performance fiber reinforced concrete (HPFRC) with w/cm ratios ranging from 0.25 to 0.40, fiber volume fraction (Vf)=0-1.5% and 10% silica fume replacement. Improvements in compressive and flexural strengths obtained for HPFRC are moderate and significant, respectively, Empirical equations developed for the compressive strength and flexural strength of HPFRC as a function of fiber volume fraction. A relation between flexural strength and compressive strength of HPFRC with R=0.78 was developed. Due to the complex mix proportions and non-linear relationship between the mix proportions and properties, models with reliable predictive capabilities are not developed and also research on HPFRC was empirical. In this paper due to the inadequacy of present method, a back propagation-neural network (BP-NN) was employed to estimate the 28-day compressive strength of HPFRC mixes. BP-NN model was built to implement the highly non-linear relationship between the mix proportions and their properties. This paper describes the data sets collected, training of ANNs and comparison of the experimental results obtained for various mixtures. On statistical analyses of collected data, a multiple linear regression (MLR) model with R2=0.78 was developed for the prediction of compressive strength of HPFRC mixes, and average absolute error (AAE) obtained is 6.5%. On validation of the data sets by NNs, the error range was within 2% of the actual values. ANN model has given the significant degree of accuracy and reliability compared to the MLR model. ANN approach can be effectively used to estimate the 28-day compressive strength of fibrous concrete mixes and is practical.

A comparison of three performance-based seismic design methods for plane steel braced frames

  • Kalapodis, Nicos A.;Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.27-44
    • /
    • 2020
  • This work presents a comparison of three performance-based seismic design methods (PBSD) as applied to plane steel frames having eccentric braces (EBFs) and buckling restrained braces (BRBFs). The first method uses equivalent modal damping ratios (ξk), referring to an equivalent multi-degree-of-freedom (MDOF) linear system, which retains the mass, the elastic stiffness and responds in the same way as the original non-linear MDOF system. The second method employs modal strength reduction factors (${\bar{q}}_k$) resulting from the corresponding modal damping ratios. Contrary to the behavior factors of code based design methods, both ξk and ${\bar{q}}_k$ account for the first few modes of significance and incorporate target deformation metrics like inter-storey drift ratio (IDR) and local ductility as well as structural characteristics like structural natural period, and soil types. Explicit empirical expressions of ξk and ${\bar{q}}_k$, recently presented by the present authors elsewhere, are also provided here for reasons of completeness and easy reference. The third method, developed here by the authors, is based on a hybrid force/displacement (HFD) seismic design scheme, since it combines the force-base design (FBD) method with the displacement-based design (DBD) method. According to this method, seismic design is accomplished by using a behavior factor (qh), empirically expressed in terms of the global ductility of the frame, which takes into account both non-structural and structural deformation metrics. These expressions for qh are obtained through extensive parametric studies involving non-linear dynamic analysis (NLDA) of 98 frames, subjected to 100 far-fault ground motions that correspond to four soil types of Eurocode 8. Furthermore, these factors can be used in conjunction with an elastic acceleration design spectrum for seismic design purposes. Finally, a comparison among the above three seismic design methods and the Eurocode 8 method is conducted with the aid of non-linear dynamic analyses via representative numerical examples, involving plane steel EBFs and BRBFs.

Simplifed Method for Estimating Energy-Dissipation Capacity of Flexure-Dominant RC Members (휨지배 철근콘크리트 부재의 에너지소산성능 평가 방법)

  • 엄태성;박흥근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.566-577
    • /
    • 2002
  • As advanced earthquake analysis/design methods such as the nonlinear static analysis are developed, it is required to estimate precisely the cyclic behavior of reinforced concrete members that is characterized by strength, deformability, and capacity of energy dissipation. However, currently, estimation of energy dissipation depends on empirical equations that are not sufficiently accurate, or experiment and sophisticated numerical analysis which are difficult to use in practice.0 the present study, nonlinear finite element analysis was performed to investigate the behavioral characteristics of flexure-dominant RC members under cyclic load. The effects of axial force, arrangement of reinforcing bars, and reinforcement ratio on the cyclic behavior were studied. Based on the investigation, a simplified method to estimate the capacity of energy dissipation was proposed, and it was verified by the comparison with the finite element analyses and experiments. The proposed method can estimate the energy dissipation of RC members more precisely than currently used empirical equations, and it is easily applicable in practice.

Structural Analysis of the Pre-weakening of a Cylindrical Concrete Silo for the Application of Overturning Explosive Demolition Method (원통형 콘크리트 사일로의 발파해체 전도공법 적용을 위한 사전취약화 구조해석)

  • Choi, Hoon;Kim, Hyo-Jin;Park, Hoon;Yoon, Soon-Jong
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.12-18
    • /
    • 2009
  • Recently, several cases of destruction of old cylindrical silos by explosive demolition method have been reported. This study deals with the subject concerning the pre-weakening of a cylindrical concrete silo for the application of overturning explosive demolition method. In the past, the pre-weakening operation of structure in explosive demolition has been done by use of some empirical methods. These empirical approaches, however, have possibilities of unexpected accidents. In order to provide a guideline for the pre-weakening of cylindrical silos and similar structures, this paper shows the result of a case study, in which the instability of a silo due to pre-weakening is investigated by a numerical structural analysis before actually conducting pre-weakening and demolition operations.

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

A Numerical Study On Various Energy and Environmental Systems (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구)

  • Jang D.S.;Song W.Y.;Na H.R.;Park B.S.;Lee E.J.;Kim B.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.160-168
    • /
    • 1995
  • This paper describes computational efforts on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, aerator-induced flow in a lake for DO(dissolved oxygen) concentration, primary clarifier for water and waste water treatment, hood ventilation in workplace, cyclone and LNG combustors and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or the RNG $k-{\varepsilon}$ models. Turbulent reaction is modeled using two fast chemistry methods such as eddy breakup and conserved scalar models. Further, a nonequilibrium model is developed for the application of the chlorination process in the Dow reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal condition of various engineering system of interest.

  • PDF

A new methodology of the development of seismic fragility curves

  • Lee, Young-Joo;Moon, Do-Soo
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.847-867
    • /
    • 2014
  • There are continuous efforts to mitigate structural losses from earthquakes and manage risk through seismic risk assessment; seismic fragility curves are widely accepted as an essential tool of such efforts. Seismic fragility curves can be classified into four groups based on how they are derived: empirical, judgmental, analytical, and hybrid. Analytical fragility curves are the most widely used and can be further categorized into two subgroups, depending on whether an analytical function or simulation method is used. Although both methods have shown decent performances for many seismic fragility problems, they often oversimplify the given problems in reliability or structural analyses owing to their built-in assumptions. In this paper, a new method is proposed for the development of seismic fragility curves. Integration with sophisticated software packages for reliability analysis (FERUM) and structural analysis (ZEUS-NL) allows the new method to obtain more accurate seismic fragility curves for less computational cost. Because the proposed method performs reliability analysis using the first-order reliability method, it provides component probabilities as well as useful byproducts and allows further fragility analysis at the system level. The new method was applied to a numerical example of a 2D frame structure, and the results were compared with those by Monte Carlo simulation. The method was found to generate seismic fragility curves more accurately and efficiently. Also, the effect of system reliability analysis on the development of seismic fragility curves was investigated using the given numerical example and its necessity was discussed.