• Title/Summary/Keyword: numerical Model

Search Result 16,046, Processing Time 0.047 seconds

Probable Volcanic Flood of the Cheonji Caldera Lake Triggered by Volcanic Eruption of Mt. Baekdusan (백두산 화산분화로 인해 천지에서 발생 가능한 화산홍수)

  • Lee, Khil-Ha;Kim, Sung-Wook;Yoo, Soon-Young;Kim, Sang-Hyun
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.492-506
    • /
    • 2013
  • The historical accounts and materials about the eruption of Mt. Baekdusan as observed by the geological survey is now showing some signs of waking from a long slumber. As a response of the volcanic eruption of Mt. Baekdusan, water release may occur from the stored water in Lake Cheonjii caldera. The volcanic flood is crucial in that it has huge potential energy that can destruct all kinds of man-made structures and that its velocity can reach up to 100 km $hr^{-1}$ to cover hundreds of kilometers of downstream of Lake Cheonji. The ultimate goal of the study is to estimate the level of damage caused by the volcanic flood of Lake Cheon-Ji caldera. As a preliminary study a scenario-based numerical analysis is performed to build hydrographs as a function of time. The analysis is performed for each scenario (breach, magma uplift, combination of uplift and breach, formation of precipitation etc.) and the parameters to require a model structure is chosen on the basis of the historic records of other volcanos. This study only considers the amount of water at the rim site as a function of time for the estimation whereas the downstream routing process is not considered in this study.

A Study to Improve the Performance of a Fixd Type Fin Stabilizer with Coanda Effect (콴다효과를 적용한 고정식 핀 안정기의 성능개선에 관한 연구)

  • Seo, Dae-Won;Lee, Se-Jin;Lee, Seung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.257-262
    • /
    • 2013
  • A ship operating in rough sea may suffer from an undesirable motion which may severely degrade the performance of equipment onboard and give a person an uncomfortable feeling. Hence, roll stabilization received a considerable attention and various devices including bilge keels, stabilizing fins, gyroscopic, anti-rolling tanks, rudders and flaps have been conceived and utilized for the purpose. The Coanda effect is evident when a jet stream is applied tangential to a curved surface of a hydrofoil since then the jet increases the circulation around the foil and consequently the lift. Model tests and numerical simulation have been conducted to examine the practicality of a fixed type fin stabilizer augmented by the Coanda jet. The results show that the lift coefficient of the modified Coanda fin at the zero angle of attack identically coincides with that of the original fin at ${\alpha}=\26^{\circ}$ when Coanda jet is supplied at the rate of $C_j$ = 0.25. It is also shown that fixed type fin stabilizers for active control of the motions of ships and the other mobile units without rotation can be put to practical use if the Coanda effect is applied.

A Numerical Study on the Effects of Buildings and Topography on the Spatial Distributions of Air Pollutants in a Building-Congested District (건물 밀집 지역에서 대기오염물질 분포에 미치는 건물과 지형의 영향에 관한 수치 연구)

  • Kang, Geon;Kim, Jae-Jin;Lee, Jae-Bum
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.139-153
    • /
    • 2020
  • Using a computationalfluid dynamics(CFD) model, thisstudy evaluated the representativeness of an air quality monitoring system (AQMS) in an urban area and presented a methodology to determine the suitable AQMS locations for specific purposes. For this, we selected a 1.6 km × 1.6 km area around the Eunpyeong-gu AQMS (AQMS 111181) as a target area. We conducted simulationsfor two emission scenarios (scenario one: air pollutants transported from inflow boundaries, scenario two: air pollutants emitted from roads). Urban airflows were markedly influenced by mountainous terrain located in the northeast and southeast of the target area, and complicated airflow patterns occurred around the buildings. The distributions of air pollutants were dependent on the terrain (mountain) in scenario one, but the road location and building height in scenario 2. We evaluated whether the AQMS could represent the air quality in the target area based on the simulations for two scenarios. The concentrations simulated at the AQMS were similar in magnitude to the layer mean concentrations, which indicated good representativeness for the air quality in the target area. We also suggested which locations were suitable for different measurement purposes (hot spots, clean zones, average zones, shelter zones, equi-background zones).

Evaluation of the Relationship between Geogrid Rib Size and Particle Size Distribution of Ballast Materials using Discrete Element Method (개별요소해석법을 이용한 지오그리드 격자 크기와 도상자갈재료 입도분포 상관관계 평가)

  • Pi, Ji-Hyun;Oh, Jeongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • This study evaluated the shear behavior of geogrid reinforced ballast material using a large scale direct shear test and discrete element method (DEM) based on PFC 3D program. The direct shear test was conducted on ballast materials that have different particle size distributions. Whereas the test results revealed that the shear strength generally increased with the larger particle size of ballast material without geogrid reinforcement, the shear behavior of ballast material was found to change pertaining to the relationship between particle size distribution and geogrid rib size. Generally, it is deemed the effectiveness of reinforcement can be achieved when the rib size is two times greater than average particle size. A numerical analysis based on DEM was conducted to verify the test results. The geogrid modeling was successfully completed by calibration process along with sensitivity analysis to have actual tensile strength provided by manufacturer. With a given geogrid model, the parametric evaluation was further carried out to examine the interactive behavior between geogrid and ballast material. Consequently, it was found that the effectiveness zone of geogrid reinforcement generated within a specific depth.

Estimation of Human Lower-Extremity Muscle Force Under Uncertainty While Rising from a Chair (의자에서 일어서는 동작 시 불확실성을 고려한 인체 하지부 근력 해석)

  • Jo, Young Nam;Kang, Moon Jeong;Chae, Je Wook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1147-1155
    • /
    • 2014
  • Biomechanical models are often used to predict muscle and joint forces in the human body. For estimation of muscle forces, the body and muscle properties have to be known. However, these properties are difficult to measure and differ from person to person. Therefore, it is necessary to predict the change in muscle forces depending on the body and muscle properties. The objective of the present study is to develop a numerical procedure for estimating the muscle forces in the human lower extremity under uncertainty of body and muscle properties during rising motion from a seated position. The human lower extremity is idealized as a multibody system in which eight Hill-type muscle force models are employed. Each model has four degrees of freedom and is constrained in the sagittal plane. The eight muscle forces are determined by minimizing the metabolic energy consumption during the rising motion. Uncertainty analysis is performed using a first-order reliability method. The one-standard-deviation range of agonistic muscle forces is calculated to be about 150-300 N.

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

Development of a n-path algorithm for providing travel information in general road network (일반가로망에서 교통정보제공을 위한 n-path 알고리듬의 개발)

  • Lim, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.135-146
    • /
    • 2004
  • For improving the effectiveness of travel information, some rational paths are needed to provide them to users driving in real road network. To meet it, k-shortest path algorithms have been used in general. Although the k-shortest path algorithm can provide several alternative paths, it has inherent limit of heavy overlapping among derived paths, which nay lead to incorrect travel information to the users. In case of considering the network consisting of several turn prohibitions popularly adopted in real world network, it makes difficult for the traditional network optimization technique to deal with. Banned and penalized turns are not described appropriately for in the standard node/link method of network definition with intersections represented by nodes only. Such problem could be solved by expansion technique adding extra links and nodes to the network for describing turn penalties, but this method could not apply to large networks as well as dynamic case due to its overwhelming additional works. This paper proposes a link-based shortest path algorithm for the travel information in real road network where exists turn prohibitions. It enables to provide efficient alternative paths under consideration of overlaps among paths. The algorithm builds each path based on the degree of overlapping between each path and stops building new path when the degree of overlapping ratio exceeds its criterion. Because proposed algorithm builds the shortest path based on the link-end cost instead or node cost and constructs path between origin and destination by link connection, the network expansion does not require. Thus it is possible to save the time or network modification and of computer running. Some numerical examples are used for test of the model proposed in the paper.

Analyses on the Impact of Plastic Deformation on Change of the Road Surface Condition (소성변형 정도를 고려한 시간전개에 따른 노면상태 변화 분석)

  • SON, Young Tae;PARK, Sang-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.3
    • /
    • pp.216-228
    • /
    • 2018
  • In this study analyzed the ponding changing of plastic deformation section follwed time development to apply weather, geometry and traffic data in additon to time development to improve road management service and safety of roads during or after rain. After We selected an 8.3km section of old national highway the Seongnam-Janghowon section and created a three-demensional surface of terrain through the numerical transformantion of design drawing data, with reflection the linear data of the same coordinate system in order to describe more realistic roads, we design additional structures with shading above roads. The altitude and azimuth of the sun were calculated and set based on the longitude and latitude data of the survey line for the analysis of the sun rate, and the daylight impact zone was visualized by setting the shaded time to an interval of 1 hour and the shade rate of the corresponding section. In addition, the evaporation volume calculated from weather data such as temperature, humidity, radiant energy, and road temperature analyzes together, it will use the way of a safer and more efficient road management as grasping the ponding changing more efficent in time development.

Simulation of Mixing Transport on Inner Reservoir and Influence Impacts on Outer Region for the Saemankeum Effluents Caused by Gate Operation (새만금호 수문 개방에 따른 내측의 혼합수송 및 외해역의 방류영향모의)

  • Suh Seung-Won;Cho Wan-Hei;Yoo Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • Numerical model tests are done in order to evaluate impact zone of low salinity water on outer region of the developing Saemankeum reservoir. Also saline mixing processes are investigated f3r the inner reservoir with consideration of Mankyoung and Donjin riverine flood discharges when sea water is passing freely through gate. In these analyses 2-d ADCIRC, 3-d TIDED3D and CE-QUAL-ICM models are used. Through models tests, it is found that inner reservoir mixing process caused by inflow of outer sea water occurs gradually. It takes at least one month for complete mixing on Mankyoung part and 6 month on Dongjin part of the reservoir. When Sinsi or Garyeok gates are opened to control inner reservoir level, discharging velocities decrease exponentially from the gates, but show very strong currents of 0.5m/sec to the 10Km region apart. These results imply that hydrodynamic circulation and ecosystem of frontal region of the Saemankeum dike might be affected in amount by gate operations, since low saline inner waters are discharged periodically at ebb tide according to tidal level.

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.