• Title/Summary/Keyword: numerical D/B

Search Result 729, Processing Time 0.025 seconds

Advances in Ultrasonic Testing of Austenitic Stainless Steel Welds

  • Moysan, J.;Ploix, M.A.;Corneloup, G.;Guy, P.;Guerjouma, R. El;Chassignole, B.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2008
  • A precise description of the material is a key point to obtain reliable results when using wave propagation codes. In the case of multipass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Two main advances are presented in the following. The first advance is a model which describes the anisotropy resulting from the metal solidification and thus the model reproduces an anisotropy that is correlated with the grain orientation. The model is called MINA for modelling anisotropy from Notebook of Arc welding. With this kind of material model1ing a good description of the behaviour of the wave propagation is obtained, such as beam deviation or even beam division. But another advance is also necessary to have a good amplitude prediction: a good quantification of the attenuation, particularly due to grain scattering, is also required as far as attenuation exhibits a strong anisotropic behaviour too. Measurement of attenuation is difficult to achieve in anisotropic materials. An experimental approach has been based both on the decomposition of experimental beams into plane waves angular spectra and on the propagation modelling through the anisotropic material via transmission coefficients computed in generally triclinic case. Various examples of results are showed and also some prospects to continue refining numerical simulation of wave propagation.

Design Optimization of M8 Blind Rivet Nut Geometry using Finite Element Analysis (유한요소해석을 이용한 M8 블라인드 리벳 너트 형상 최적 설계)

  • Gu, B.;Choi, J.M.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.157-162
    • /
    • 2020
  • Blind rivet nuts are increasingly used in automotive for the joining of sheets. Their application, however, requires appropriate design guides to prevent catastrophic events arising from the failure of joints. In this study, the shaft shape of a frequently used M8 blind rivet nut is optimized based on 3D numerical analysis of the blind rivet nut considering the characteristics of thread. The thread needs to be modeled to suitably consider the fastening of the M8 bolt after the crimping process. FE analysis showed that while the friction in the contact between crimp flange and plate has no significant effect on the crimp geometry, shaft thickness (t) and shaft height (h) are the most significant design variables. The parameter study including various combinations of t and h reveals that they affect the gap (the distance between the crimped flange and the plate that develops through riveting) and the load acting on the plate. The gap is an indicator of the tightening force. It is found that t is inversely proportional to the gap, and proportional to the load, whereas h is proportional to the gap and inversely proportional to the load. Based on our FE analysis results, we propose the range 0.062 < t/h < 0.1 to ensure sufficient fastening (high clamping load, small gap) of the M8 blind rivet nut. The design guide for determining the t/h ratio proposed in this study can be used for general quantitative analysis of the size and the t/h ratio of blind rivet nuts.

Enhancing Visualization in Self-Organizing Maps (SOM에서 개체의 시각화)

  • Um Ick-Hyun;Huh Myung-Hoe
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.83-98
    • /
    • 2005
  • Exploring distributional patterns of multivariate data is very essential in understanding the characteristics of given data set, as well as in building plausible models for the data. For that purpose, low-dimensional visualization methods have been developed by many researchers along various directions. As one of methods, Kohonen's SOM (Self-Organizing Map) is prominent. SOM compresses the volume of the data, yields abstraction from the data and offers visual display on low-dimensional grids. Although it is proven quite effective, it has one undesirable property: SOM's display is discrete. In this study, we propose two techniques for enhancing quality of SOM's display, so that SOM's display becomes continuous. The proposed methods are demonstrated in two numerical examples.

Design of Low Noise Airfoil for Use on Small Wind Turbines (소형 풍력발전기 소음 저감을 위한 익형 설계 연구)

  • Kim, Tae-Hyung;Lee, Seung-Min;Kim, Ho-Geon;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Effects of supplementation of urea-molasses multinutrient block (UMMB) on the performance of dairy cows fed good quality forage based diets with rice straw as a night feeding

  • Jayawickrama, Dona R.;Weerasinghe, Piyatilak B.;Jayasena, Dinesh D.;Mudannayake, Deshani C.
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.2
    • /
    • pp.123-129
    • /
    • 2013
  • An experiment was conducted to evaluate the effects of nitrogen supplementation through urea-molasses multinutrient block (UMMB) on the performance of dairy cows fed good quality forage based diets with rice straw as a night feeding. A total of 10 multiparous crossbred dairy cows in their early lactation were grouped into two categories based on their breed, parity, body weight, milk yield, milk fat and protein contents and daily fed a chopped CO-3 grass (Pennisetum purpureum ${\times}$ Pennisetum americanum; hybrid Napier) ad-libitum, 1 kg of dairy cow concentrate feed during the day time and 5 kg of rice straw (dry matter basis) at night as the basal diet (control) for 5 wk. In addition to the basal diet, the treatment group received 300 g of crushed UMMB daily throughout the experimental period. Cows were milked twice daily and the milk yields were recorded. Milk and feed samples were collected weekly for chemical analysis. Supplementation of UMMB had no significant effects (p>0.05) on straw intake, daily milk yield, contents and yields of milk constituents such as milk fat, protein, lactose and solids-non-fat. In addition, milk urea nitrogen content were not affected (p>0.05) by UMMB supplementation. However, numerical increments in all the parameters measured were observed during the study in cows fed diets supplemented with UMMB. It can be concluded that nitrogen supplied through UMMB had no effects on production performances of dairy cows in this study.

Development of One Day-Ahead Renewable Energy Generation Assessment System in South Korea (우리나라 비중앙급전발전기의 하루전 출력 예측시스템 개발)

  • Lee, Yeon-Chan;Lim, Jin-Taek;Oh, Ung-Jin;N.Do, Duy-Phuong;Choi, Jae-Seok;Kim, Jin-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.505-514
    • /
    • 2015
  • This paper proposes a probabilistic generation assessment model of renewable energy generators(REGs) considering uncertainty of resources, mainly focused on Wind Turbine Generator(WTG) and Solar Cell Generator(SCG) which are dispersed widely in South Korea The proposed numerical analysis method assesses the one day-ahead generation by combining equivalent generation characteristics function and probabilistic distribution function of wind speed(WS) and solar radiation(SR) resources. The equivalent generation functions(EGFs) of the wind and solar farms are established by grouping a lot of the farms appropriately centered on Weather Measurement Station(WMS). First, the EGFs are assessed by using regression analysis method based on typical least square method from the recorded actual generation data and historical resources(WS and SR). Second, the generation of the REGs is assessed by adding the one day-ahead resources forecast, announced by WMS, to the EGFs which are formulated as third order degree polynomials using the regression analysis. Third, a Renewable Energy Generation Assessment System(REGAS) including D/B of recorded actual generation data and historical resources is developed using the model and algorithm predicting one day-ahead power output of renewable energy generators.

Performances of wireless ATM cell transmission with partial concatenated coding (무선 ATM셀 전송을 위한 부분 연쇄 부호화 기법의 성능분석)

  • 이진호;김태중;이동도;안재영;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.2014-2026
    • /
    • 1997
  • In this paper, the performances of wireless asynchronous transfer mode (ATM) cell transmission in mobile work are analyzed. We adopt 16Star QAM as amodulation technique in wireless channel and considered Reed-Solomon, convolutional, and concatenated coding to improve the error rate performances, and also proposed the Partial Concatenated Coding (PCC) technique as UEP(unequal error protection) code for efficient transmission of ATM cell in the air interface. We consider Doppler's effect, Rician fading, and diversity technique of maximal-ratio combining (MRC) for mobile channel model. For performance measure, we analyze bit error rate, ATM cell loss probability, ATM cell error probability, and network performances of ATM cell transmission delay and throughput. The numerical results show that the adoption of PCC is a prospective way for the evolution of future wireless ATM network on mobile environment.

  • PDF

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

A Study on the Thermal Elasto-Plastic Analysis of Plated Structures (판구조물의 열탄소성 해석)

  • Kim, B.I.;Jang, C.D.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.68-76
    • /
    • 1997
  • The welding-induced initial imperfections such as residual stresses and initial strains in plated structures of ships and offshore structures can be effectively evaluated by the thermal elasto-plastic analysis method proposed in this paper. In the analysis of heat conduction of plate structures, both the analytical method and the numerical method are used. For the thermal elasto-plastic analysis of plates, the finite element analysis is performed, based on the initial strain method. In the plastic domain during incremental process, the 2nd order terms of stress increments and yield stress increments were considered, so that time increment could be controlled for more stable solution. To measure temperature distribution and angular distortion of plates during welding, bead-on-plate experiment are perform with various heat input and plate thickness. Measured data show good agreement with the calculated results.

  • PDF

The Development of Tunnel Behavior Prediction System Using Artificial Neural Network (인공신경망을 이용한 터널 거동 예측 시스템 개발)

  • 이종구;문홍득;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.267-278
    • /
    • 2003
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this study, in order to predict tunnel-induced ground movements, Tunnel Behavior Prediction System (TBPS) was developed by using these artificial neural networks model, based on a Held instrumentation database (i.e. crown settlement, convergence, axial force of rock bolt, compressive and shear stress of shotcrete, stress of concrete lining etc.) obtained from 193 location data of 31 different tunnel sites where works are completed. The study and test of the network were performed by Back Propagation Algorithm which is known as a systematic technique for studying the multi-layer artificial neural network. The tunnel behaviors predicted by TBPS were compared with monitored data in the tunnel sites and numerical analysis results. This study showed that the values obtained from TBPS were within allowable limits. It is concluded that this system can effectively estimate the tunnel ground movements and can also be used f3r tunneling feasibility study, and basic and detailed design and construction of tunnel.