• Title/Summary/Keyword: number of transmissions

Search Result 166, Processing Time 0.027 seconds

Improved Connectivity-Based Reliable Multicast MAC Protocol for IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜에서 신뢰성 있는 멀티캐스트 전송을 위한 연결정보 기반의 효율적인 MAC 프로토콜)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • The reliable multicast MAC (Medium Access Control) protocol is needed to guarantee the recipients' nonerroneous reception of the multicast data frames, which can be transmitted by the AP (Access Point) in infrastructure mode IEEE 802.11 wireless LANs. Enhancing the BMMM (Batch Mode Multicast MAC) protocol, in the literature, the connectivity-based reliable multicast MAC protocol was proposed to reduce the RAK (Request for ACKnowledgement) frame transmissions and enhance the multicast MAC performance. However, the number of necessary RAK frame transmissions increases as the number of multicast recipients increases. To alleviate the problem of the larger number of RAK frame transmissions with the larger number of multicast recipients, we propose the clustering algorithm for partitioning the recipients into a small number of clusters, so that the recipients are connected each other within the same clusters. Numerical examples are presented to show the reliable multicast MAC performance improvement by the clustering algorithm.

Performance Analysis on Intelligent Reflecting Surface Transmission for NOMA Towards 6G Systems

  • Chung, Kyuhyuk
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.220-224
    • /
    • 2022
  • The efficiencies of rates and energy in the fifth generation (5G) wireless channels can be improved via intelligent reflecting surface (IRS) transmissions, towards the sixth generation (6G) mobile communications. While previous works have considered mainly optimizations of IRS transmissions, we propose a performance analysis on the total power in terms of the number of reflecting devices for IRS transmissions in non-orthogonal multiple access (NOMA) networks. First, we derive an analytical expression of the total power gain factor in terms of the number of reflecting devices for the cell-edge user in IRS-NOMA systems. Then we evaluate how many reflecting devices we need to obtain a total power gain in dB. Moreover, we also demonstrate numerically the signal-to-noise ratio (SNR) gain of the IRS-NOMA system over the conventional NOMA system based on the achievable data rate.

Efficient Multicast Tree Construction in Wireless Mesh Networks

  • Nargesi, Amir-Abbas;Bag-Mohammadi, Mozafar
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.613-619
    • /
    • 2014
  • Multicast routing algorithms designed for wireline networks are not suitable for wireless environments since they cannot efficiently exploit the inherent characteristics of wireless networks such as the broadcast advantage. There are many routing protocols trying to use these advantages to decrease the number of required transmissions or increase the reception probability of data (e.g., opportunistic routing).Reducing the number of transmissions in a multicast tree directly decreases the bandwidth consumption and interference and increases the overall throughput of the network. In this paper, we introduce a distributed multicast routing protocol for wireless mesh networks called NCast which take into account the data delivery delay and path length when constructing the tree. Furthermore, it effectively uses wireless broadcast advantage to decrease the number of forwarding nodes dynamically when a new receiver joins the tree.Our simulation results show that NCast improves network throughput, data delivery ratio and data delivery delay in comparison with on demand multicast routing protocol. It is also comparable with multichannel multicast even though it does not use channeling technique which eliminates the interference inherently.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

Impact of Rician Fading on BER Performance on Intelligent Reflecting Surface NOMA Towards 6G Systems

  • Chung, Kyuhyuk
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.307-312
    • /
    • 2022
  • The commercialization of the fifth generation (5G) mobile systems has quested enabling technologies, such as intelligent reflecting surface (IRS) transmissions, towards the sixth generation (6G) networks. In this paper, we present a bit-error rate (BER) performance analysis on IRS transmissions in 5G non-orthogonal multiple access (NOMA) networks. First, we derive a closed-form expression for the BER of IRS-NOMA transmissions under Rician fading channels. Then, by Monte Carlo simulations, we validate the proposed approximate BER expression, and show numerically that the derived BER expression is in good agreement with Monte Carlo simulations. Furthermore, we also analyze the BER performance of IRS-NOMA networks under Rician fading channels with different numbers of reflecting elements, and demonstrate that the performances improve monotonically as the number of reflecting devices increases.

A Survey on Multiple Channel protocols for Ad Hoc Wireless Networks

  • Su, Xin;Shin, Seokjoo;Chung, Ilyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.842-845
    • /
    • 2009
  • Wireless ad hoc networks often suffer from rapidly degrading performance with the number of user increases in the network. One of the major reasons for this rapid degradation of performance is the fact that users are sharing a single channel. Obviously, the problem of using single shared channel schemes is that the probability of collision increases with the number of nodes. Fortunately, it is possible to solve this problem with multi-channel approaches. Due to the especial properties of multiple channels, using the multiple channels is more efficient than single channel because it enhances the capacity of the channel and reduces the error rate during data transmission. Some multi-channel schemes us one dedicated channel for control packets and one separate channel for data transmissions. On the other hand, another protocols use more than two channels for data transmissions. This paper summarizes six multiple channel protocols based on these two kinds of schemes. Then we compare them and discuss the research challenge of multiple channel protocols.

Improved Compressed Network Coding Scheme for Energy-Efficient Data Communication in Wireless Sensor Networks

  • Zhou, Ying;Yang, Lihua;Yang, Longxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2946-2962
    • /
    • 2017
  • An improved energy-efficient compressed network coding method is proposed for the data communication in the wireless sensor networks (WSNs). In the method, the compressed sensing and network coding are jointly used to improve the energy efficiency, and the two-hop neighbor information is employed to choose the next hop to further reduce the number of the transmissions. Moreover, a new packet format is designed to facilitate the intermediate node selection. To theoretically verify the efficiency of the proposed method, the expressions for the number of the transmissions and receptions are derived. Simulation results show that, the proposed method has higher energy efficiency compared with the available schemes, and it only requires a few packets to reconstruct measurements with reasonable quality.

Capacity Analysis of UWB Networks in Three-Dimensional Space

  • Cai, Lin X.;Cai, Lin;Shen, Xuemin;Mark, Jon W.
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.287-296
    • /
    • 2009
  • Although asymptotic bounds of wireless network capacity have been heavily pursued, the answers to the following questions are still critical for network planning, protocol and architecture design: Given a three-dimensional (3D) network space with the number of active users randomly located in the space and using the wireless communication technology, what are the expected per-flow throughput, network capacity, and network transport capacity? In addition, how can the protocol parameters be tuned to enhance network performance? In this paper, we focus on the ultra wideband (UWB) based wireless personal area networks (WPANs) and provide answers to these questions, considering the salient features of UWB communications, i.e., low transmission/interference power level, accurate ranging capability, etc. Specifically, we demonstrate how to explore the spatial multiplexing gain of UWB networks by allowing appropriate concurrent transmissions. Given 3D space and the number of active users, we derive the expected number of concurrent transmissions, network capacity and transport capacity of the UWB network. The results reveal the main factors affecting network (transport) capacity, and how to determine the best protocol parameters, e.g., exclusive region size, in order to maximize the capacity. Extensive simulation results are given to validate the analytical results.

Multicast Scheduling Scheme in Dense WLAN Systems (밀집 무선랜 시스템에서의 멀티캐스트 전송 스케줄링 기법)

  • Kim, Namyeong;Kim, Wonjung;Pack, Sangheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.441-450
    • /
    • 2015
  • Nowadays, many WLAN access points (APs) are deployed in hotspot areas such as shopping malls and stations. As the number of WLAN APs deployed increases, how to manage densely deployed APs in an efficient manner becomes one of the most important issues in WLANs. In this environment, uncoordinated multicast services can lead to frequent collisions due to simultaneous transmissions among APs. In this paper, we propose a multicast scheduling algorithm that can exploit simultaneous transmissions in multiple sectors and avoid redundant transmissions in dense networks. Simulation results demonstrate that the proposed scheme can reduce the multicast transmission latency compared to comparison scheduling schemes.

Processing-Node Status-based Message Scattering and Gathering for Multi-processor Systems on Chip

  • Park, Jongsu
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.279-284
    • /
    • 2019
  • This paper presents processing-node status-based message scattering and gathering algorithms for multi-processor systems on chip to reduce the communication time between processors. In the message-scattering part of the message-passing interface (MPI) scatter function, data transmissions are ordered according to the proposed linear algorithm, based on the processor status. The MPI hardware unit in the root processing node checks whether each processing node's status is 'free' or 'busy' when an MPI scatter message is received. Then, it first transfers the data to a 'free' processing node, thereby reducing the scattering completion time. In the message-gathering part of the MPI gather function, the data transmissions are ordered according to the proposed linear algorithm, and the gathering is performed. The root node receives data from the processing node that wants to transfer first, and reduces the completion time during the gathering. The experimental results show that the performance of the proposed algorithm increases at a greater rate as the number of processing nodes increases.