• Title/Summary/Keyword: number of spans

Search Result 104, Processing Time 0.025 seconds

Analysis of the Transmissivities of Direct and Diffuse Solar Radiation in Multispan Glasshouse (연동 유리온실내의 직달일사 및 산란일사 투과율 해석)

  • 김용현;이석건
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.439-444
    • /
    • 1998
  • Effects of the number of spans, orientation and latitude on the transmissivities of direct and diffuse solar radiation in multispan glasshouse were analyzed using a computer simulation model (Kim and Lee, 1997). The number of spans did not affect the transmissivity of diffuse solar radiation, ranging 60∼61%. The transmissivities of direct solar radiation were 55∼64% for E-W orientation and 47∼70% for N-S orientation in ten multispan glasshouse. There was no effect of the latitude on the transmissivity of direct solar radiation in domestic regions. Differences in the transmissivity of direct solar radiation between single-span and multispan glasshouse were significant for E-W orientation during winter season; however, those were relatively small for N-S orientation throughout the year. Transmissivity of direct solar radiation decreased with the increasing number of spans for E-W glasshouse, whereas those for N-S glasshouse was hardly affected by the number of spans.

  • PDF

3D simulation of railway bridges for estimating fundamental frequency using geometrical and mechanical properties

  • Moazam, Adel Mahmoudi;Hasani, Nemat;Yazdani, Mahdi
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.257-271
    • /
    • 2017
  • There are many plain concrete arch bridges in Iran that have been used as railway bridges for more than seventy years. Owe to the fact that these bridges have not been designed seismically, and even may be loaded under high-speed trains, evaluation of fundamental frequencies of the bridges against earthquake and high-speed train vibrations is necessary for considering dynamics effects. To evaluate complex behavior of these bridges, results of field tests are useful. Since it is not possible to perform field tests for all arch bridges, these structures should be simulated correctly by computers for structural assessment. Several parameters are employed to describe the bridges, such as number of spans, length of spans, geometrical and material properties. In this study, results of field tests are used for modal analysis and adapted for 64 three dimensional finite element models with various physical parameters. Computer simulations show length of spans has important effect on fundamental frequencies of plain concrete arch bridge and modal deformations of bridges is in longitudinal and transverse directions. Also, these results demonstrate that fundamental frequencies of bridges decrease after increasing span length and number of spans. Plus, some relations based in the number of spans (n) and span length (l) are proposed for calculation of fundamental frequencies of plain concrete arch bridge.

Evaluation of Natural Ventilation Performance for Multi-span Plastic Greenhouses (다연동 플라스틱 온실의 자연환기성능 평가)

  • Nam, Sang-Woon;Kim, Young-Shik;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Environmental measurements in the many different types of horticultural farms were carried out to evaluate the ventilation performance for multi-span plastic greenhouses according to the eaves height, the number of spans, the existence of side wall vents and the position of roof vents. Hydroponic tomatoes were being cultivated in all experimental greenhouses, and ventilation rates of the greenhouses were analyzed by the heat balance method. It showed that the ventilation rate in the greenhouse with 4 m eaves height increased about 22% compared to the greenhouse with 2 m eaves height. The ventilation rate in the greenhouse with 9 spans decreased about 17% compared to the greenhouse with 5 spans. In the greenhouse with 9 spans, if there were no side wall vents, the ventilation rate showed about a third of the case that side wall vents were open. Overall, as the eaves height was higher and the number of spans was smaller in multi-span greenhouses, the natural ventilation performance was better. And the ventilation performance was best in the greenhouse which the eaves height was high and the position of roof vents was ridge, not gutter. Therefore, in order to maximize the natural ventilation performance, multi-span plastic greenhouses need to improve their structures such as that make the eaves height higher, place the roof vents on the ridge, install the side wall vents as much as possible, and the number of spans is limited to about 10 spans.

Response modification factor and seismic fragility assessment of skewed multi-span continuous concrete girder bridges

  • Khorraminejad, Amir;Sedaghati, Parshan;Foliente, Greg
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.389-403
    • /
    • 2021
  • Skewed bridges, being irregular structures with complicated dynamic behavior, are more susceptible to earthquake damage. Reliable seismic-resistant design of skewed bridges can be achieved by accurate determination of nonlinear seismic demands. However, the effect of geometric characteristics on the response modification factor (R-factor) is not accounted for in bridge design practices. This study attempts to investigate the effects of changes in the number of spans, skew angle and bearing stiffness on R-factor values and to assess the seismic fragility of skewed bridges. Results indicated that changes in the skew angle had no significant effect on R-factor values which were in consonance with code-prescribed R values. Also, unlike the increase in the number of spans that resulted in a decrease in the R-factor, the increase in bearing stiffness led to higher R-factor values. Findings of the fragility analysis implied that although the increase in the number of spans, as well as the increase in the skew angle, led to a higher failure probability, greater values of bearing stiffness reduced the collapse probability. For practicing design engineers, it is recommended that maximum demands on substructure elements to be calculated when the excitation angle is applied along the principal axes of skewed bridges.

Modifications to fire resistance ratings of steel frames based on structural configuration: A probabilistic-based approach

  • Behnam, Behrouz
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.661-672
    • /
    • 2021
  • In this article, the role of spans number and length in fire-resistance ratings (FRRs) of fireproofed steel frames are investigated. First, over a span-lengthening scenario, two one- and three-bay frames under the ISO834 fire are examined. It is shown that the FRRs of the frames rely highly on the changes made on their span length. Second, a building designed for three spans number of three, four, and five under natural fire is investigated. The beams are designed for two load-capacity-ratios (LCRs) of optimum and ultimate. The fire curves are determined through a probabilistic-based approach. It is shown that the structural vulnerability vastly increases while the number of spans decreases. The results show that for an optimum LCR, while the five-span frame can meet the required FRR in 87% of the fire scenarios, the four- and three-span frames can meet the required FRR in only 56%, and 50% of the fire scenarios, respectively. For an ultimate LCR, the five-, four- and three-span frames can meet the required FRR in 81%, 50%, and 37.5% of the fire scenarios, respectively. Functional solutions are then proposed to resolve the insufficiencies in the results and to rectify the application of the standard-based FRRs in the cases studied. The study here highlights how employing current standard-based FRRs can endanger structural safety if they are not connected to structural characteristics; a crucial hint specifically for the structural engineering community who may be not well familiar with the fundamentals of performance-based approaches.

Compensation of the Distorted WDM Channels in Ultra-long Transmission Link of 80 km × 56 Spans (80 km × 56 spans의 초장거리 전송 링크에서 왜곡된 WDM 채널의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.251-257
    • /
    • 2019
  • The configuration of ultra-long optical transmission link with dispersion management and optical phase conjugation is proposed. The whole transmission link consist of 80 km (single mode fiber span) ${\times}$ 56 fiber spans. The artificial distribution of single mode fibers' lengths and residual dispersions in fiber spans, which are gradually increased/decreased as the span number is increased, is adopted to compensate for the distorted wavelength division multiplexed channels. Since the compensation effect through the artificial distribution in the previous researches is expected to decrease as the number of fiber spans are increased, three-time repetition of the artificial distribution patterns at intervals of 9 fiber spans applied into the link with dispersion management and optical phase conjugation is proposed. From the simulation results, it is confirmed that the compensation in the link configured by the special distribution pattern among 4 proposed patterns is slightly improved than the link configured by the conventional method, which is designed by the repeat-less distribution pattern.

Assessing the ductility of moment frames utilizing genetic algorithm and artificial neural networks

  • Mazloom, Moosa;Afkar, Hossein;Pourhaji, Pardis
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.445-461
    • /
    • 2018
  • The aim of this research is to evaluate the effects of the number of spans, height of spans, number of floors, height of floors, column to beam moment of inertia ratio, and plastic joints distance of beams from columns on the ductility of moment frames. For the facility in controlling the ductility of the frames, this paper offers a simple relation instead of complex equations of different codes. For this purpose, 500 analyzed and designed frames were randomly selected, and their ductility was calculated by the use of nonlinear static analysis. The results cleared that the column-to-beam moment of inertia ratio had the highest effect on ductility, and if this relation was more than 2.8, there would be no need for using the complex relations of codes for controlling the ductility of frames. Finally, the ductility of the most frames of this research could be estimated by using the combination of genetic algorithm and artificial neural networks properly.

Wind induced vibrations of long electrical overhead transmission line spans: a modified approach

  • Verma, Himanshu;Hagedorn, Peter
    • Wind and Structures
    • /
    • v.8 no.2
    • /
    • pp.89-106
    • /
    • 2005
  • For estimating the vortex excited vibrations of overhead transmission lines, the Energy Balance Principle (EBP) is well established for spans damped near the ends. Although it involves radical simplifications, the method is known to give useful estimates of the maximum vibration levels. For very long spans, there often is the need for a large number of in-span fittings, such as in-span Stockbridge dampers, aircraft warning spheres etc. This adds complexity to the problem and makes the energy balance principle in its original form unsuitable. In this paper, a modified version of EBP is described taking into account in-span damping and in particular also aircraft warning spheres. In the first step the complex transcendental eigenvalue problem is solved for the conductor with in-span fittings. With the thus determined complex eigenvalues and eigenfunctions a modified energy balance principle is then used for scaling the amplitudes of vibrations at each resonance frequency. Bending strains are then estimated at the critical points of the conductor. The approach has been used by the authors for studying the influence of in-span Stockbridge dampers and aircraft warning spheres; and for optimizing their positions in the span. The modeling of the aircraft warning sphere is also described in some detail.

Deformability of Flat Plate Subjected to Unbalanced Moment (불균형 휨모멘트를 받는 플랫 플레이트의 변형능력)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.482-493
    • /
    • 2003
  • Flat plate structures subjected to lateral load have less deformability than conventional moment frames, due to the brittle failure of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed to investigate the deformability of flat plates. The numerical results show that as number of continuous spans increases, the deformability of flat plates considerably decreases. Therefore, existing experiments using sub-assemblages with 1 or 2 spans may overestimate the deformability of flat plates, and current design provisions based on the experiments may not be accurate in estimating the deformability. A design method estimating the deformability was developed on the basis of numerical results, and verified by comparison with existing experiment. In the proposed method, the effects of primary design parameters such as direct shear force, punching shear capacity, aspect ratio of connection, number of spans, and initial stiffness of plate can be considered.

Aerodynamic Investigation of Three-Dimensional Wings in Ground Effect for Aero-levitation Electric Vehicle (공기부상 전동 운행체의 지면효과를 받는 3차원 날개에 대한 공력해석 연구)

  • Oh H. J.;Seo J. H.;Moon Y. J.;Cho J. S.;Yoon Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.196-201
    • /
    • 2004
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various ground clearances and wing spans at the Reynolds number of $2\times10^6$. Numerical results show that a sizeable three-dimensional flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and that this is conjectured a primary cause for the high lift-to-drag(L/D) reduction rate of the main wing, when the wing span is decreased. Improvements on L/D ratios of the wings with small spans are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction.

  • PDF